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Module 6.4 : Principal Component Analysis and its
Interpretations
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The story ahead...

Over the next few slides we will introduce Principal Component Analysis and
see three different interpretations of it
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x

y
Consider the following data

Each point (vector) here is
represented using a linear
combination of the x and y axes
(i.e. using the point’s x and y
co-ordinates)

In other words we are using x and y
as the basis

What if we choose a different basis?
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u1

u2

For example, what if we use u1 and
u2 as a basis instead of x and y.

We observe that all the points have a
very small component in the direction
of u2 (almost noise)

It seems that the same data which
was originally in R2(x, y) can now be
represented in R1(u1) by making a
smarter choice for the basis
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u2

Let’s try stating this more formally

Why do we not care about u2?

Because the variance in the data in
this direction is very small (all data
points have almost the same value in
the u2 direction)

If we were to build a classifier on
top of this data then u2 would not
contribute to the classifier as the
points are not distinguishable along
this direction
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In general, we are interested in
representing the data using fewer
dimensions such that

the data has
high variance along these dimensions

Is that all?

No, there is something else that we
desire. Let’s see what.
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x y z

1 1 1
0.5 0 0
0.25 1 1
0.35 1.5 1.5
0.45 1 1
0.57 2 2.1
0.62 1.1 1
0.73 0.75 0.76
0.72 0.86 0.87

ρyz =

∑n
i=1(yi − y)(zi − z)√∑n

i=1(yi − y)2
√∑n

i=1(zi − z)2

Consider the following data

Is z adding any new information
beyond what is already contained in
y?

The two columns are highly
correlated (or they have a high
covariance)

In other words the column z
is redundant since it is linearly
dependent on y.
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In general, we are interested in
representing the data using fewer
dimensions such that

the data has high variance along these
dimensions

the dimensions are linearly
independent (uncorrelated)

(even better if they are orthogonal
because that is a very convenient
basis)
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Let p1, p2, · · · , pn be a set of such n linearly independent orthonormal vectors. Let
P be a n× n matrix such that p1, p2, · · · , pn are the columns of P .

Let x1, x2, · · · , xm ∈ Rn be m data points and let X be a matrix such that
x1, x2, · · · , xm are the rows of this matrix. Further let us assume that the data is
0-mean and unit variance.

We want to represent each xi using this new basis P .

xi = αi1p1 + αi2p2 + αi3p3 + · · ·+ αinpn

For an orthonormal basis we know that we can find these α′
is using

αij = xTi pj =
[
← xi →

]T  ↑pj
↓


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In general, the transformed data x̂i is given by

x̂i =
[
← xTi →

]  ↑ ↑
p1 · · · pn
↓ ↓

 = xTi P

and

X̂ = XP (X̂ is the matrix of transformed points)
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Theorem:
If X is a matrix such that its columns have zero mean and if X̂ = XP then the
columns of X̂ will also have zero mean.

Proof: For any matrix A, 1TA gives us a row vector with the ith element
containing the sum of the ith column of A. (this is easy to see using the
row-column picture of matrix multiplication).
Consider

1T X̂ = 1TXP = (1TX)P

But 1TX is the row vector containing the sums of the columns of X. Thus
1TX = 0. Therefore, 1T X̂ = 0.
Hence the transformed matrix also has columns with sum = 0.

Theorem:
XTX is a symmetric matrix.
Proof: We can write (XTX)T = XT (XT )T = XTX
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Definition:
If X is a matrix whose columns are zero mean then Σ = 1

mX
TX is the covariance

matrix. In other words each entry Σij stores the covariance between columns i and
j of X.

Explanation: Let C be the covariance matrix of X. Let µi, µj denote the means
of the ith and jth column of X respectively. Then by definition of covariance, we
can write :

Cij =
1

m

m∑
k=1

(Xki − µi)(Xkj − µj)

=
1

m

m∑
k=1

XkiXkj (∵ µi = µj = 0)

=
1

m
XT

i Xj =
1

m
(XTX)ij
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X̂ = XP

Using the previous theorem & definition, we get 1
mX̂

T X̂ is the covariance matrix of
the transformed data. We can write :

1

m
X̂T X̂ =

1

m
(XP )

T
XP =

1

m
PTXTXP = PT

(
1

m
XTX

)
P = PT ΣP

Each cell i, j of the covariance matrix 1
mX̂

T X̂ stores the covariance between columns

i and j of X̂.

Ideally we want, (
1

m
X̂T X̂

)
ij

= 0 i 6= j ( covariance = 0)(
1

m
X̂T X̂

)
ij

6= 0 i = j ( variance 6= 0)

In other words, we want
1

m
X̂T X̂ = PT ΣP = D [ where D is a diagonal matrix ]
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We want,
P TΣP = D

But Σ is a square matrix and P is an orthogonal matrix

Which orthogonal matrix satisfies the following condition?

P TΣP = D

In other words, which orthogonal matrix P diagonalizes Σ?

Answer: A matrix P whose columns are the eigen vectors of Σ = XTX [By
Eigen Value Decomposition]

Thus, the new basis P used to transform X is the basis consisting of the eigen
vectors of XTX
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Why is this a good basis?

Because the eigen vectors of XTX are linearly independent (proof : Slide 19
Theorem 1)

And because the eigen vectors of XTX are orthogonal (∵ XTX is symmetric -
saw proof earlier)

This method is called Principal Component Analysis for transforming the data
to a new basis where the dimensions are non-redundant (low covariance) & not
noisy (high variance)

In practice, we select only the top-k dimensions along which the variance is
high (this will become more clear when we look at an alternalte interpretation
of PCA)
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