Module 6.5 : PCA : Interpretation 2
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represent z; exactly as a linear combination of these vectors.

n
T = Z a;jp; [we know how to estimate a;js but we will come back to that later]
j=1

But we are interested only in the top-k dimensions (we want to get rid of noisy &
redundant dimensions)

k
& = Z QikPk
J=1

We want to select ps such that we minimise the reconstructed error
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n
min Z p;fmepj s.t. pfpjzl Vi=k+1,k+2,---,n
Pk+1,Pk+2,""" Pn |
Jj=k+1
The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C' (Proof : refer Slide 26).

Thus we select P = p1,pa,--- ,pn as eigen vectors of C' and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k +1,- - ,n]



Key Idea J

Minimize the error in reconstructing x; after projecting the data on to a new basis.




Let’s look at the ‘Reconstruction Error’ in the context of our toy example
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e Consider the point x = [3.3,3] in the

original data
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‘_-;,""-': e the perfect reconstruction of x is
e given by (using n = 2 dimensions)
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x
e But we are going to reconstruct it
using fewer (only £ = 1 < n
e u; = [1,1] and up = [—1,1] are the

4 dimensions, ignoring the low variance
new basis vectors us dimension)

@ Let us convert them to unit vectors
1

1 -1 1 . _
w=\7% 7 & uy = % U w—alul—[3.15 3.15]

(reconstruction with minimum error)
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The eigen vectors of a matrix with distinct eigenvalues are linearly independent
The eigen vectors of a square symmetric matrix are orthogonal

PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors

The n — k dimensions which contribute very little to the reconstruction error
are discarded

These are also the directions along which the variance is minimum




