Module 6.5 : PCA : Interpretation 2

Given n orthogonal linearly independent vectors $P = p_1, p_2, \cdots, p_n$ we can represent x_i exactly as a linear combination of these vectors.

Given n orthogonal linearly independent vectors $P = p_1, p_2, \dots, p_n$ we can represent x_i exactly as a linear combination of these vectors.

$$x_i = \sum_{j=1}^n \alpha_{ij} p_j$$
 [we know how to estimate $\alpha'_{ij} s$ but we will come back to that later]

Given n orthogonal linearly independent vectors $P = p_1, p_2, \cdots, p_n$ we can represent x_i exactly as a linear combination of these vectors.

$$x_i = \sum_{j=1}^n \alpha_{ij} p_j$$
 [we know how to estimate $\alpha'_{ij} s$ but we will come back to that later]

But we are interested only in the top-k dimensions (we want to get rid of noisy & redundant dimensions)

$$\hat{x}_i = \sum_{i=1}^k \alpha_{ik} p_k$$

Given n orthogonal linearly independent vectors $P = p_1, p_2, \cdots, p_n$ we can represent x_i exactly as a linear combination of these vectors.

$$x_i = \sum_{j=1}^n \alpha_{ij} p_j$$
 [we know how to estimate $\alpha'_{ij} s$ but we will come back to that later]

But we are interested only in the top-k dimensions (we want to get rid of noisy & redundant dimensions)

$$\hat{x}_i = \sum_{i=1}^k \alpha_{ik} p_k$$

We want to select $p_i's$ such that we minimise the reconstructed error

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$= \sum_{i=1}^{m} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)^T (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$= \sum_{i=1}^{m} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)^T (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_j \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{L=k+1, L \neq k}^{n} \alpha_{ij} p_j^T p_L \alpha_{iL}$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$= \sum_{i=1}^{m} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)^T (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_j \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{L=k+1, L \neq k}^{n} \alpha_{ij} p_j^T p_L \alpha_{iL}$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij}^2 \qquad (\because p_j^T p_j = 1, p_i^T p_j = 0 \quad \forall i \neq j)$$

$$e = \sum_{i=1}^{m} (x_{i} - \hat{x}_{i})^{T} (x_{i} - \hat{x}_{i})$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_{j} - \sum_{j=1}^{k} \alpha_{ij} p_{j} \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_{j} \right)^{2} = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_{j} \right)^{T} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_{j} \right)$$

$$= \sum_{i=1}^{m} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_{n})^{T} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_{n})$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_{j}^{T} p_{j} \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{L=k+1, L \neq k}^{n} \alpha_{ij} p_{j}^{T} p_{L} \alpha_{iL}$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij}^{2} \qquad (\because p_{j}^{T} p_{j} = 1, p_{i}^{T} p_{j} = 0 \quad \forall i \neq j)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} (x_{i}^{T} p_{j})^{2}$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$= \sum_{i=1}^{m} (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)^T (\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_j \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{k=k+1, k \neq k}^{n} \alpha_{ij} p_j^T p_k \alpha_{ik}$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij}^2 \qquad (\because p_j^T p_j = 1, p_i^T p_j = 0 \quad \forall i \neq j)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} (x_i^T p_j)^2$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2 = \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^T \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)$$

$$= \sum_{i=1}^{m} \left(\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n \right)^T \left(\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n \right)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_j \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{k=k+1, k\neq k}^{n} \alpha_{ij} p_j^T p_k \alpha_{ik}$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij}^2 \qquad (\because p_j^T p_j = 1, p_i^T p_j = 0 \quad \forall i \neq j)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} (x_i^T p_j)^2$$

$$e = \sum_{i=1}^{m} (x_i - \hat{x}_i)^T (x_i - \hat{x}_i)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j - \sum_{j=1}^{k} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} \alpha_{ij} p_j \right)^2$$

$$= \sum_{i=1}^{m} \left(\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n \right)^T \left(\alpha_{i,k+1} p_{k+1} + \alpha_{i,k+2} p_{k+2} + \dots + \alpha_{i,n} p_n \right)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_j \alpha_{ij} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{k=k+1, k \neq k}^{n} \sum_{j=k+1}^{n} \alpha_{ij} p_j^T p_k \alpha_{ik}$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} \alpha_{ij}^2 \qquad (\because p_j^T p_j = 1, p_i^T p_j = 0 \quad \forall i \neq j)$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} (x_i^T p_j)^2$$

We want to minimize e

$$\min_{p_{k+1}, p_{k+2}, \dots, p_n} \sum_{j=k+1}^n p_j^T m C p_j \qquad s.t. \quad p_j^T p_j = 1 \quad \forall j = k+1, k+2, \dots, n$$

We want to minimize e

$$\min_{p_{k+1}, p_{k+2}, \dots, p_n} \sum_{j=k+1}^n p_j^T m C p_j \qquad s.t. \quad p_j^T p_j = 1 \quad \forall j = k+1, k+2, \dots, n$$

The solution to the above problem is given by the eigen vectors corresponding to the smallest eigen values of C (**Proof**: refer Slide 26).

We want to minimize e

$$\min_{p_{k+1}, p_{k+2}, \dots, p_n} \sum_{j=k+1}^n p_j^T m C p_j \qquad s.t. \quad p_j^T p_j = 1 \quad \forall j = k+1, k+2, \dots, n$$

The solution to the above problem is given by the eigen vectors corresponding to the smallest eigen values of C (**Proof**: refer Slide 26).

Thus we select $P = p_1, p_2, \dots, p_n$ as eigen vectors of C and retain only top-k eigen vectors to express the data [or discard the eigen vectors $k + 1, \dots, n$]

Key Idea

Minimize the error in reconstructing x_i after projecting the data on to a new basis.

Let's look at the 'Reconstruction Error' in the context of our toy example

• $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

• Consider the point x = [3.3, 3] in the original data

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

• Consider the point x = [3.3, 3] in the original data

•
$$\alpha_1 = x^T u_1 = 6.3/\sqrt{2}$$

 $\alpha_2 = x^T u_2 = 0.3/\sqrt{2}$

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

- Consider the point x = [3.3, 3] in the original data
- $\alpha_1 = x^T u_1 = 6.3/\sqrt{2}$ $\alpha_2 = x^T u_2 = 0.3/\sqrt{2}$
- the perfect reconstruction of x is given by (using n = 2 dimensions)

$$x = \alpha_1 u_1 + \alpha_2 u_2 = \begin{bmatrix} 3.3 & 3 \end{bmatrix}$$

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

- Consider the point x = [3.3, 3] in the original data
- $\alpha_1 = x^T u_1 = 6.3/\sqrt{2}$ $\alpha_2 = x^T u_2 = 0.3/\sqrt{2}$
- \bullet the perfect reconstruction of x is given by (using n=2 dimensions)

$$x = \alpha_1 u_1 + \alpha_2 u_2 = \begin{bmatrix} 3.3 & 3 \end{bmatrix}$$

• But we are going to reconstruct it using fewer (only k = 1 < ndimensions, ignoring the low variance u_2 dimension)

$$\hat{x} = \alpha_1 u_1 = \begin{bmatrix} 3.15 & 3.15 \end{bmatrix}$$

(reconstruction with minimum error)

• The eigen vectors of a matrix with distinct eigenvalues are linearly independent

- The eigen vectors of a matrix with distinct eigenvalues are linearly independent
- The eigen vectors of a square symmetric matrix are orthogonal

- The eigen vectors of a matrix with distinct eigenvalues are linearly independent
- The eigen vectors of a square symmetric matrix are orthogonal
- \bullet PCA exploits this fact by representing the data using a new basis comprising only the top-k eigen vectors

- The eigen vectors of a matrix with distinct eigenvalues are linearly independent
- The eigen vectors of a square symmetric matrix are orthogonal
- ullet PCA exploits this fact by representing the data using a new basis comprising only the top-k eigen vectors
- The n-k dimensions which contribute very little to the reconstruction error are discarded

- The eigen vectors of a matrix with distinct eigenvalues are linearly independent
- The eigen vectors of a square symmetric matrix are orthogonal
- \bullet PCA exploits this fact by representing the data using a new basis comprising only the top-k eigen vectors
- The n-k dimensions which contribute very little to the reconstruction error are discarded
- These are also the directions along which the variance is minimum