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Given n orthogonal linearly independent vectors P = p1, p2, · · · , pn we can
represent xi exactly as a linear combination of these vectors.

xi =
n∑

j=1

αijpj [we know how to estimate α′ijs but we will come back to that later]

But we are interested only in the top-k dimensions (we want to get rid of noisy &
redundant dimensions)

x̂i =

k∑
j=1

αikpk

We want to select p′is such that we minimise the reconstructed error

e =

m∑
i=1

(xi − x̂i)T (xi − x̂i)
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e =

m∑
i=1

(xi − x̂i)T (xi − x̂i)

=
m∑
i=1

 n∑
j=1

αijpj −
k∑

j=1

αijpj

2

=

m∑
i=1

 n∑
j=k+1

αijpj

2

=

m∑
i=1

 n∑
j=k+1

αijpj

T  n∑
j=k+1

αijpj


=

m∑
i=1

(αi,k+1pk+1 + αi,k+2pk+2 + . . .+ αi,npn)
T (αi,k+1pk+1 + αi,k+2pk+2 + . . .+ αi,npn)

=
m∑
i=1

n∑
j=k+1

αijp
T
j pjαij +

m∑
i=1

n∑
j=k+1

n∑
L=k+1,L6=k

αijp
T
j pLαiL

=

m∑
i=1

n∑
j=k+1

α2
ij (∵ pTj pj = 1, pTi pj = 0 ∀i 6= j)

=
m∑
i=1

n∑
j=k+1

(
xTi pj

)2

=
m∑
i=1

n∑
j=k+1

(
pTj xi

) (
xTi pj

)
=

n∑
j=k+1

pTj

(
m∑
i=1

xix
T
i

)
pj

=
n∑

j=k+1

pTj mCpj

[
∵

1

m

m∑
i=1

xix
T
i =

XTX

m
= C

]
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We want to minimize e

min
pk+1,pk+2,··· ,pn

n∑
j=k+1

pTj mCpj s.t. pTj pj = 1 ∀j = k + 1, k + 2, · · · , n

The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C (Proof : refer Slide 26).

Thus we select P = p1, p2, · · · , pn as eigen vectors of C and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k + 1, · · · , n]
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Key Idea

Minimize the error in reconstructing xi after projecting the data on to a new basis.
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Let’s look at the ‘Reconstruction Error’ in the context of our toy example
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(3.3, 3)

x

y

u1u2

u1 = [1, 1] and u2 = [−1, 1] are the
new basis vectors

Let us convert them to unit vectors
u1 =

[
1√
2

1√
2

]
& u2 =

[
−1√
2

1√
2

]

Consider the point x = [3.3, 3] in the
original data

α1 = xTu1 = 6.3/
√
2

α2 = xTu2 = 0.3/
√
2

the perfect reconstruction of x is
given by (using n = 2 dimensions)

x = α1u1 + α2u2 =
[
3.3 3

]
But we are going to reconstruct it
using fewer (only k = 1 < n
dimensions, ignoring the low variance
u2 dimension)

x̂ = α1u1 =
[
3.15 3.15

]
(reconstruction with minimum error)
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√
2

the perfect reconstruction of x is
given by (using n = 2 dimensions)

x = α1u1 + α2u2 =
[
3.3 3

]
But we are going to reconstruct it
using fewer (only k = 1 < n
dimensions, ignoring the low variance
u2 dimension)

x̂ = α1u1 =
[
3.15 3.15

]
(reconstruction with minimum error)
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Recap

The eigen vectors of a matrix with distinct eigenvalues are linearly independent

The eigen vectors of a square symmetric matrix are orthogonal

PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors

The n − k dimensions which contribute very little to the reconstruction error
are discarded

These are also the directions along which the variance is minimum
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