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Module 6.7 : PCA : Practical Example
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Consider we are given a large number of
images of human faces (say, m images)

Each image is 100× 100 [10K dimensions]

We would like to represent and store the
images using much fewer dimensions (around
50-200)

We construct a matrix X ∈ Rm×10K

Each row of the matrix corresponds to 1 image

Each image is represented using 10K
dimensions
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X ∈ Rm×10K (as explained on the previous
slide)

We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTX

Note that XTX is a n× n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)

We can convert each eigen vector into a 100×
100 matrix and treat it as an image

Let’s see what we get

What we have plotted here are the first 16
eigen vectors of XTX (basically, treating each
10K dimensional eigen vector as a 100 × 100
dimensional image)
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These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

1∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

2∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

4∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

8∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

12∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality



4/4

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality


