Module 6.8 : Singular Value Decomposition

Let us get some more perspective on eigen vectors before moving ahead

$$Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \cdots, Av_n = \lambda_n v_n$$

$$Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \cdots, Av_n = \lambda_n v_n$$

• If a vector x in \mathbb{R}^n is represented using v_1, v_2, \cdots, v_n as basis then

$$x = \sum_{i=1}^{n} \alpha_i v_i$$

$$Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \cdots, Av_n = \lambda_n v_n$$

• If a vector x in \mathbb{R}^n is represented using v_1, v_2, \dots, v_n as basis then

$$x = \sum_{i=1}^{n} \alpha_i v_i$$
Now, $Ax = \sum_{i=1}^{n} \alpha_i A v_i = \sum_{i=1}^{n} \alpha_i \lambda_i v_i$

$$Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \cdots, Av_n = \lambda_n v_n$$

• If a vector x in \mathbb{R}^n is represented using v_1, v_2, \cdots, v_n as basis then

$$x = \sum_{i=1}^{n} \alpha_i v_i$$
Now, $Ax = \sum_{i=1}^{n} \alpha_i A v_i = \sum_{i=1}^{n} \alpha_i \lambda_i v_i$

• The matrix multiplication reduces to a scalar multiplication if the eigen vectors of A are used as a basis.

• So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?
- Is it possible to have $A_{m \times n} x_{n \times 1} = x_{n \times 1}$?

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?
- Is it possible to have $A_{m \times n} x_{n \times 1} = x_{n \times 1}$? Not possible!

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?
- Is it possible to have $A_{m \times n} x_{n \times 1} = x_{n \times 1}$? Not possible!
- The result of $A_{m \times n} x_{n \times 1}$ is a vector belonging to \mathbb{R}^m (whereas $x \in \mathbb{R}^n$)

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?
- Is it possible to have $A_{m \times n} x_{n \times 1} = x_{n \times 1}$? Not possible!
- The result of $A_{m \times n} x_{n \times 1}$ is a vector belonging to \mathbb{R}^m (whereas $x \in \mathbb{R}^n$)
- So do we miss out on the advantage that a basis of eigen vectors provides for square matrices (i.e. converting matrix multiplications into scalar multiplications)?

- So far all the discussion was centered around square matrices $(A \in \mathbb{R}^{n \times n})$
- What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can they have eigen vectors?
- Is it possible to have $A_{m \times n} x_{n \times 1} = x_{n \times 1}$? Not possible!
- The result of $A_{m \times n} x_{n \times 1}$ is a vector belonging to \mathbb{R}^m (whereas $x \in \mathbb{R}^n$)
- So do we miss out on the advantage that a basis of eigen vectors provides for square matrices (i.e. converting matrix multiplications into scalar multiplications)?
- We will see the answer to this question over the next few slides

• Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m
- Now what if every vector $x \in \mathbb{R}^n$ is represented using the basis V

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m
- Now what if every vector $x \in \mathbb{R}^n$ is represented using the basis V

$$x = \sum_{i=1}^{k} \alpha_i v_i$$
 [note we are using k instead of n; will clarify this in a minute]

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m
- Now what if every vector $x \in \mathbb{R}^n$ is represented using the basis V

$$x = \sum_{i=1}^{k} \alpha_i v_i$$
 [note we are using k instead of n ; will clarify this in a minute]

$$Ax = \sum_{i=1}^{k} \alpha_i Av_i$$

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m
- Now what if every vector $x \in \mathbb{R}^n$ is represented using the basis V

$$x = \sum_{i=1}^k \alpha_i v_i$$
 [note we are using k instead of n ; will clarify this in a minute]
$$Ax = \sum_{i=1}^k \alpha_i A v_i$$

$$= \sum_{i=1}^k \alpha_i \sigma_i u_i$$

- Note that matrix $A_{m \times n}$ provides a transformation $\mathbb{R}^n \to \mathbb{R}^m$
- What if we could have pairs of vectors $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ such that $v_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$ and $Av_i = \sigma_i u_i$
- Further let's assume that $v_1, \dots, v_k, \dots, v_n$ are orthogonal & thus form a basis V in \mathbb{R}^n
- Similarly let's assume that $u_1, \dots, u_k, \dots, u_m$ are orthogonal & thus form a basis U in \mathbb{R}^m
- Now what if every vector $x \in \mathbb{R}^n$ is represented using the basis V

$$x = \sum_{i=1}^k \alpha_i v_i$$
 [note we are using k instead of n ; will clarify this in a minute]
$$Ax = \sum_{i=1}^k \alpha_i A v_i$$

$$= \sum_{i=1}^k \alpha_i \sigma_i u_i$$

• Once again the matrix multiplication reduces to a scalar multiplication

Let's look at a geometric interpretation of this

• \mathbb{R}^n - Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function]

- \mathbb{R}^n Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function]
- \bullet \mathbb{R}^m Space of all vectors which are outputs of the function Ax

- \mathbb{R}^n Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function]
- \bullet \mathbb{R}^m Space of all vectors which are outputs of the function Ax
- \bullet We are interested in finding a basis U, V such that

- \mathbb{R}^n Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function]
- \bullet \mathbb{R}^m Space of all vectors which are outputs of the function Ax
- We are interested in finding a basis U, V such that
 - \bullet V basis for inputs

- \mathbb{R}^n Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function]
- \bullet \mathbb{R}^m Space of all vectors which are outputs of the function Ax
- We are interested in finding a basis U, V such that
 - \bullet V basis for inputs
 - ullet U basis for outputs

- \mathbb{R}^n Space of all vectors which can multiply with A to give Ax [this is the space of inputs of the function
- \mathbb{R}^m Space of all vectors which are outputs of the function Ax
- We are interested in finding a basis U, V such that
 - V basis for inputs
 - U basis for outputs
- such that if the inputs and outputs are represented using this basis then the operation Ax reduces to a scalar operation

• What do we mean by saying that dimension of rowspace is k? If $x \in \mathbb{R}^n$ then why is the dimension not n.

- What do we mean by saying that dimension of rowspace is k? If $x \in \mathbb{R}^n$ then why is the dimension not n.
- It means that of all the possible vectors in \mathbb{R}^n only a subspace of vectors lying in \mathbb{R}^k can act as inputs to Ax and produce a non-zero output. The remaining vectors in \mathbb{R}^{n-k} will produce a zero output

- What do we mean by saying that dimension of rowspace is k? If $x \in \mathbb{R}^n$ then why is the dimension not n.
- It means that of all the possible vectors in \mathbb{R}^n only a subspace of vectors lying in \mathbb{R}^k can act as inputs to Ax and produce a non-zero output. The remaining vectors in \mathbb{R}^{n-k} will produce a zero output
- Hence we need only k dimensions to represent x

$$x = \sum_{i=1}^{k} \alpha_i v_i$$

• Let's look at a way of writing this as a matrix operation

$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \cdots, Av_k = \sigma_k u_k$$

$$A_{m \times n} V_{n \times k} = U_{m \times k} \underbrace{\sum_{k \times k}}_{\text{diagonal matrix}}$$

• Let's look at a way of writing this as a matrix operation

$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \cdots, Av_k = \sigma_k u_k$$

$$A_{m \times n} V_{n \times k} = U_{m \times k} \underbrace{\sum_{k \times k}}_{\text{diagonal matrix}}$$

• If we have k orthogonal vectors $(V_{n\times k})$ then using Gram Schmidt orthogonalization, we can find n-k more orthogonal vectors to complete the basis for \mathbb{R}^n [We can do the same for U]

$$A_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$

$$U^T A V = \Sigma \qquad [U^{-1} = U^T] \qquad A = U \Sigma V^T \qquad [V^{-1} = V^T]$$

• Let's look at a way of writing this as a matrix operation

$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \cdots, Av_k = \sigma_k u_k$$

$$A_{m \times n} V_{n \times k} = U_{m \times k} \underbrace{\sum_{k \times k}}_{\text{diagonal matrix}}$$

• If we have k orthogonal vectors $(V_{n\times k})$ then using Gram Schmidt orthogonalization, we can find n-k more orthogonal vectors to complete the basis for \mathbb{R}^n [We can do the same for U]

$$A_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$

$$U^T A V = \Sigma \qquad [U^{-1} = U^T] \qquad A = U \Sigma V^T \qquad [V^{-1} = V^T]$$

 \bullet Σ is a diagonal matrix with only the first k diagonal elements as non-zero

• Let's look at a way of writing this as a matrix operation

$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \cdots, Av_k = \sigma_k u_k$$

$$A_{m \times n} V_{n \times k} = U_{m \times k} \underbrace{\sum_{k \times k}}_{\text{diagonal matrix}}$$

• If we have k orthogonal vectors $(V_{n\times k})$ then using Gram Schmidt orthogonalization, we can find n-k more orthogonal vectors to complete the basis for \mathbb{R}^n [We can do the same for U]

$$A_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$

$$U^T A V = \Sigma \qquad [U^{-1} = U^T] \qquad A = U \Sigma V^T \qquad [V^{-1} = V^T]$$

- \bullet Σ is a diagonal matrix with only the first k diagonal elements as non-zero
- Now the question is how do we find V, U and Σ

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T)$$

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$A^{T}A = V\Sigma^{2}V^{T}$$

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$A^{T}A = V\Sigma^{2}V^{T}$$

• What does this look like?

 \bullet Suppose $V,\,U$ and Σ exist, then

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$A^{T}A = V\Sigma^{2}V^{T}$$

• What does this look like? Eigen Value decomposition of A^TA

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$A^{T}A = V\Sigma^{2}V^{T}$$

- What does this look like? Eigen Value decomposition of A^TA
- Similarly we can show that

$$AA^T = U\Sigma^2 U^T$$

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$A^{T}A = V\Sigma^{2}V^{T}$$

- What does this look like? Eigen Value decomposition of A^TA
- Similarly we can show that

$$AA^T = U\Sigma^2 U^T$$

• Thus U and V are the eigen vectors of AA^T and A^TA respectively and $\Sigma^2 = \Lambda$ where Λ is the diagonal matrix containing eigen values of A^TA

$$\begin{bmatrix} & & \\ & A & \end{bmatrix}_{m \times n} = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ u_1 & \cdots & u_k \\ \downarrow & \cdots & \downarrow \end{bmatrix}_{m \times k} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix}_{k \times k} \begin{bmatrix} \leftarrow & v_1 & \rightarrow \\ & \vdots & \\ \leftarrow & v_k & \rightarrow \end{bmatrix}_{k \times n}$$
$$= \sum_{k=1}^{k} \sigma_i u_i v_i^T$$

$$\begin{bmatrix} & & \\ & A & \end{bmatrix}_{m \times n} = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ u_1 & \cdots & u_k \\ \downarrow & \cdots & \downarrow \end{bmatrix}_{m \times k} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix}_{k \times k} \begin{bmatrix} \leftarrow & v_1 & \rightarrow \\ & \vdots & \\ \leftarrow & v_k & \rightarrow \end{bmatrix}_{k \times n}$$
$$= \sum_{i=1}^k \sigma_i u_i v_i^T$$

Theorem:

 $\sigma_1 u_1 v_1^T$ is the best rank-1 approximation of the matrix A. $\sum_{i=1}^2 \sigma_i u_i v_i^T$ is the best rank-2 approximation of matrix A. In general, $\sum_{i=1}^k \sigma_i u_i v_i^T$ is the best rank-k approximation of matrix A. In other words, the solution to

 $\min \|A - B\|_F^2$ is given by :

 $B = U_{.,k} \Sigma_{k,k} V_{k,.}^T$ (minimizes reconstruction error of A)

$$\sigma_i = \sqrt{\lambda_i} = \text{singular value of A}$$

 $\sigma_i = \sqrt{\lambda_i} = \text{singular value of A}$ U = left singular matrix of A

 $\sigma_i = \sqrt{\lambda_i} = \text{singular value of A}$ U = left singular matrix of A V = right singular matrix of A