Module 6.8 : Singular Value Decomposition



Let us get some more perspective on eigen vectors before moving ahead
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o The matrix multiplication reduces to a scalar multiplication if the eigen vectors
of A are used as a basis.
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So far all the discussion was centered around square matrices (A € R™*")
What about rectangular matrices A € R™*"? Can they have eigen vectors?
Is it possible to have A, xnTnx1 = Tnx1! Not possible !

The result of A,,xnTnx1 is a vector belonging to R™ (whereas x € R")

So do we miss out on the advantage that a basis of eigen vectors provides
for square matrices (i.e.  converting matrix multiplications into scalar
multiplications)?

We will see the answer to this question over the next few slides
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@ What if we could have pairs of vectors (v1,u1), (v, ua), -+, (vg,ux) such that v; € R™,
u; € R™ and Av; = o;u;

@ Further let’s assume that vy, - ,vg, - , v, are orthogonal & thus form a basis V' in R™

@ Similarly let’s assume that wy,- - ,ug,- - , Uy, are orthogonal & thus form a basis U in R™

@ Now what if every vector © € R™ is represented using the basis V'
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@ Once again the matrix multiplication reduces to a scalar multiplication
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dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az
@ We are interested in finding a basis U, V such that

o V - basis for inputs
o U - basis for outputs

@ such that if the inputs and outputs are represented using this basis then the operation
Azx reduces to a scalar operation
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o What do we mean by saying that dimension of rowspace is k7 If z € R" then
why is the dimension not n.

o It means that of all the possible vectors in R™ only a subspace of vectors lying
in R* can act as inputs to Az and produce a non-zero output. The remaining
vectors in R" % will produce a zero output

o Hence we need only k& dimensions to represent x

k
xTr = E (07X ¥4
=1
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o Let’s look at a way of writing this as a matrix operation
Avy = oyuy, Avy = oaug, -+ -, Avg = ojuy,

Aanank = Um><k Ekxk
~——

diagonal matrix

(]

If we have k orthogonal vectors (V,xx) then using Gram Schmidt
orthogonalization, we can find n — k more orthogonal vectors to complete the
basis for R” [We can do the same for U]

AanVan = meEan

vtav=x [Uvt=vu"] A=vuxv? |[v1=VT]

> is a diagonal matrix with only the first k& diagonal elements as non-zero
Now the question is how do we find V', U and ¥
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Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vetutusv?
ATA=vy2yT
What does this look like? Eigen Value decomposition of AT A

Similarly we can show that
AAT = Ut

Thus U and V are the eigen vectors of AAT and AT A respectively and 32 = A
where A is the diagonal matrix containing eigen values of AT A
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Theorem:
Ululvf is the best rank-1 approximation of the matrix A. 21221 aiuiv;‘r is the best
rank-2 approximation of matrix A. In general, Zle aiuiviT is the best rank-k
approximation of matrix A. In other words, the solution to

min ||A — B||% is given by :

B :kaEthkT; (minimizes reconstruction error of A)
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V' = right singular matrix of A



