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Module 6.8 : Singular Value Decomposition
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Let us get some more perspective on eigen vectors before moving ahead
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Let v1, v2, · · · , vn be the eigen vectors of A and let λ1, λ2, · · · , λn be
corresponding eigen values

Av1 = λ1v1, Av2 = λ2v2, · · · , Avn = λnvn

If a vector x in Rn is represented using v1, v2, · · · , vn as basis then

x =

n∑
i=1

αivi

Now, Ax =

n∑
i=1

αiAvi =

n∑
i=1

αiλivi

The matrix multiplication reduces to a scalar multiplication if the eigen vectors
of A are used as a basis.
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So far all the discussion was centered around square matrices (A ∈ Rn×n)

What about rectangular matrices A ∈ Rm×n? Can they have eigen vectors?

Is it possible to have Am×nxn×1 = xn×1?

Not possible !

The result of Am×nxn×1 is a vector belonging to Rm (whereas x ∈ Rn)

So do we miss out on the advantage that a basis of eigen vectors provides
for square matrices (i.e. converting matrix multiplications into scalar
multiplications)?

We will see the answer to this question over the next few slides
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Note that matrix Am×n provides a transformation Rn → Rm

What if we could have pairs of vectors (v1, u1), (v2, u2), · · · , (vk, uk) such that vi ∈ Rn,
ui ∈ Rm and Avi = σiui

Further let’s assume that v1, · · · , vk, · · · , vn are orthogonal & thus form a basis V in Rn

Similarly let’s assume that u1, · · · , uk, · · · , um are orthogonal & thus form a basis U in Rm

Now what if every vector x ∈ Rn is represented using the basis V

x =
k∑

i=1

αivi [note we are using k instead of n ; will clarify this in a minute]

Ax =
k∑

i=1

αiAvi

=

k∑
i=1

αiσiui

Once again the matrix multiplication reduces to a scalar multiplication
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Let’s look at a geometric interpretation of this
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R
n

Row
space

of A

R mColumnspace
of A

A

dim=k=rank(A)
dim=k=rank(A)

Rn - Space of all vectors which can multiply with A to give Ax [ this is the space of
inputs of the function]

Rm - Space of all vectors which are outputs of the function Ax

We are interested in finding a basis U , V such that

V - basis for inputs
U - basis for outputs

such that if the inputs and outputs are represented using this basis then the operation
Ax reduces to a scalar operation
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What do we mean by saying that dimension of rowspace is k? If x ∈ Rn then
why is the dimension not n.

It means that of all the possible vectors in Rn only a subspace of vectors lying
in Rk can act as inputs to Ax and produce a non-zero output. The remaining
vectors in Rn−k will produce a zero output

Hence we need only k dimensions to represent x

x =
k∑

i=1

αivi
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Let’s look at a way of writing this as a matrix operation

Av1 = σ1u1, Av2 = σ2u2, · · · , Avk = σkuk

Am×nVn×k = Um×k Σk×k︸ ︷︷ ︸
diagonal matrix

If we have k orthogonal vectors (Vn×k) then using Gram Schmidt
orthogonalization, we can find n − k more orthogonal vectors to complete the
basis for Rn [We can do the same for U]

Am×nVn×n = Um×mΣm×n

UTAV = Σ [U−1 = UT ] A = UΣV T [V −1 = V T ]

Σ is a diagonal matrix with only the first k diagonal elements as non-zero

Now the question is how do we find V , U and Σ
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Suppose V , U and Σ exist, then

ATA = (UΣV T )T (UΣV T )

= V ΣTUTUΣV T

ATA = V Σ2V T

What does this look like?

Eigen Value decomposition of ATA

Similarly we can show that

AAT = UΣ2UT

Thus U and V are the eigen vectors of AAT and ATA respectively and Σ2 = Λ
where Λ is the diagonal matrix containing eigen values of ATA
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 A


m×n

=


↑ · · · ↑

u1 · · · uk
↓ · · · ↓


m×k

σ1 . . .

σk


k×k

← v1 →
...

← vk →


k×n

=

k∑
i=1

σiuiv
T
i

Theorem:

σ1u1v
T
1 is the best rank-1 approximation of the matrix A.

∑2
i=1 σiuiv

T
i is the best

rank-2 approximation of matrix A. In general,
∑k

i=1 σiuiv
T
i is the best rank-k

approximation of matrix A. In other words, the solution to

min ‖A−B‖2F is given by :

B =U.,kΣk,kV
T
k,. (minimizes reconstruction error of A)
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σi =
√
λi = singular value of A

U = left singular matrix of A

V = right singular matrix of A
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