Module 7.1: Introduction to Autoencoders

• An autoencoder is a special type of feed forward neural network which does the following

- An autoencoder is a special type of feed forward neural network which does the following
- \bullet Encodes its input $\mathbf{x_i}$ into a hidden representation \mathbf{h}

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

- An autoencoder is a special type of feed forward neural network which does the following
- \bullet Encodes its input $\mathbf{x_i}$ into a hidden representation \mathbf{h}

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

- An autoencoder is a special type of feed forward neural network which does the following
- Encodes its input $\mathbf{x_i}$ into a hidden representation \mathbf{h}
- <u>Decodes</u> the input again from this hidden representation

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

- An autoencoder is a special type of feed forward neural network which does the following
- Encodes its input $\mathbf{x_i}$ into a hidden representation \mathbf{h}
- <u>Decodes</u> the input again from this hidden representation

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

- An autoencoder is a special type of feed forward neural network which does the following
- Encodes its input $\mathbf{x_i}$ into a hidden representation \mathbf{h}
- <u>Decodes</u> the input again from this hidden representation
- The model is trained to minimize a certain loss function which will ensure that $\hat{\mathbf{x}}_i$ is close to \mathbf{x}_i (we will see some such loss functions soon)

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\hat{\mathbf{x}}_i = f(W^*\mathbf{b} + \mathbf{c})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$
$$\hat{\mathbf{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

• Let us consider the case where $\dim(\mathbf{h}) < \dim(\mathbf{x_i})$

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

- Let us consider the case where $\dim(\mathbf{h}) < \dim(\mathbf{x_i})$
- If we are still able to reconstruct $\hat{\mathbf{x}}_i$ perfectly from \mathbf{h} , then what does it say about \mathbf{h} ?

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

- Let us consider the case where $\dim(\mathbf{h}) < \dim(\mathbf{x_i})$
- If we are still able to reconstruct $\hat{\mathbf{x}}_i$ perfectly from \mathbf{h} , then what does it say about \mathbf{h} ?
- \mathbf{h} is a loss-free encoding of $\mathbf{x_i}$. It captures all the important characteristics of $\mathbf{x_i}$

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\mathbf{\hat{x}_i} = f(W^*\mathbf{h} + \mathbf{c})$$

- Let us consider the case where $\dim(\mathbf{h}) < \dim(\mathbf{x_i})$
- If we are still able to reconstruct $\hat{\mathbf{x}}_i$ perfectly from \mathbf{h} , then what does it say about \mathbf{h} ?
- \mathbf{h} is a loss-free encoding of $\mathbf{x_i}$. It captures all the important characteristics of $\mathbf{x_i}$
- Do you see an analogy with PCA?

$$\mathbf{h} = g(W\mathbf{x_i} + \mathbf{b})$$

$$\hat{\mathbf{x}}_{\mathbf{i}} = f(W^*\mathbf{h} + \mathbf{c})$$

An autoencoder where $\dim(h) < \dim(x_i)$ is called an under complete autoencoder

- Let us consider the case where $\dim(\mathbf{h}) < \dim(\mathbf{x_i})$
- If we are still able to reconstruct $\hat{\mathbf{x}}_i$ perfectly from \mathbf{h} , then what does it say about \mathbf{h} ?
- \mathbf{h} is a loss-free encoding of $\mathbf{x_i}$. It captures all the important characteristics of $\mathbf{x_i}$
- Do you see an analogy with PCA?

• Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\mathbf{\hat{x}_i}$

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\hat{\mathbf{x}_i}$
- Such an identity encoding is useless in practice as it does not really tell us anything about the important characteristics of the data

An autoencoder where $\dim(h) \ge \dim(\mathbf{x_i})$ is called an over complete autoencoder

- Let us consider the case when $\dim(\mathbf{h}) \ge \dim(\mathbf{x_i})$
- In such a case the autoencoder could learn a trivial encoding by simply copying $\mathbf{x_i}$ into \mathbf{h} and then copying \mathbf{h} into $\hat{\mathbf{x_i}}$
- Such an identity encoding is useless in practice as it does not really tell us anything about the important characteristics of the data

 \bullet Choice of $f(\mathbf{x_i})$ and $g(\mathbf{x_i})$

- Choice of $f(\mathbf{x_i})$ and $g(\mathbf{x_i})$
- Choice of loss function

- Choice of $f(\mathbf{x_i})$ and $g(\mathbf{x_i})$
- Choice of loss function

• Suppose all our inputs are binary (each $x_{ij} \in \{0,1\}$)

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

$$\mathbf{\hat{x}_i} = \tanh(W^*\mathbf{h} + \mathbf{c})$$

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{\mathbf{i}} = \tanh(W^*\mathbf{h} + \mathbf{c})$$
$$\hat{\mathbf{x}}_{\mathbf{i}} = W^*\mathbf{h} + \mathbf{c}$$

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

$$\begin{aligned} \hat{\mathbf{x}}_{i} &= \tanh(W^*\mathbf{h} + \mathbf{c}) \\ \hat{\mathbf{x}}_{i} &= W^*\mathbf{h} + \mathbf{c} \\ \hat{\mathbf{x}}_{i} &= logistic(W^*\mathbf{h} + \mathbf{c}) \end{aligned}$$

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{i} = \tanh(W^{*}\mathbf{h} + \mathbf{c})$$

$$\hat{\mathbf{x}}_{i} = W^{*}\mathbf{h} + \mathbf{c}$$

$$\hat{\mathbf{x}}_{i} = logistic(W^{*}\mathbf{h} + \mathbf{c})$$

• Logistic as it naturally restricts all outputs to be between 0 and 1

g is typically chosen as the sigmoid function

- Suppose all our inputs are binary (each $x_{ij} \in \{0, 1\}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{i} = \tanh(W^{*}\mathbf{h} + \mathbf{c})$$

$$\hat{\mathbf{x}}_{i} = W^{*}\mathbf{h} + \mathbf{c}$$

$$\hat{\mathbf{x}}_{i} = logistic(W^{*}\mathbf{h} + \mathbf{c})$$

• Logistic as it naturally restricts all outputs to be between 0 and 1

• Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{\mathbf{i}} = \tanh(W^*\mathbf{h} + \mathbf{c})$$

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\mathbf{\hat{x}_i} = \tanh(W^*\mathbf{h} + \mathbf{c})$$
$$\mathbf{\hat{x}_i} = W^*\mathbf{h} + \mathbf{c}$$

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{\mathbf{i}} = \tanh(W^*\mathbf{h} + \mathbf{c})$$

$$\mathbf{\hat{x}_i} = W^* \mathbf{h} + \mathbf{c}$$

$$\hat{\mathbf{x}}_{\mathbf{i}} = \operatorname{logistic}(W^*\mathbf{h} + \mathbf{c})$$

(real valued inputs)

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\hat{\mathbf{x}}_{i} = \tanh(W^{*}\mathbf{h} + \mathbf{c})$$

$$\hat{\mathbf{x}}_{i} = W^{*}\mathbf{h} + \mathbf{c}$$

$$\hat{\mathbf{x}}_{i} = \text{logistic}(W^{*}\mathbf{h} + \mathbf{c})$$

• What will logistic and tanh do?

0.25 0.5 1.25 3.5 4.5 (real valued inputs)

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\mathbf{\hat{x}_i} = \tanh(W^*\mathbf{h} + \mathbf{c})$$

$$\mathbf{\hat{x}_i} = W^*\mathbf{h} + \mathbf{c}$$

$$\mathbf{\hat{x}_i} = \text{logistic}(W^*\mathbf{h} + \mathbf{c})$$

- What will logistic and tanh do?
- They will restrict the reconstructed $\hat{\mathbf{x}}_i$ to lie between [0,1] or [-1,1] whereas we want $\hat{\mathbf{x}}_i \in \mathbb{R}^n$

0.25 0.5 1.25 3.5 4.5 (real valued inputs)

Again, g is typically chosen as the sigmoid function

- Suppose all our inputs are real (each $x_{ij} \in \mathbb{R}$)
- Which of the following functions would be most apt for the decoder?

$$\mathbf{\hat{x}_i} = \tanh(W^*\mathbf{h} + \mathbf{c})$$

$$\mathbf{\hat{x}_i} = W^*\mathbf{h} + \mathbf{c}$$

$$\mathbf{\hat{x}_i} = \text{logistic}(W^*\mathbf{h} + \mathbf{c})$$

- What will logistic and tanh do?
- They will restrict the reconstructed $\hat{\mathbf{x}}_i$ to lie between [0,1] or [-1,1] whereas we want $\hat{\mathbf{x}}_i \in \mathbb{R}^n$

The Road Ahead

- Choice of $f(\mathbf{x_i})$ and $g(\mathbf{x_i})$
- Choice of loss function

• Consider the case when the inputs are real valued

- Consider the case when the inputs are real valued
- The objective of the autoencoder is to reconstruct $\hat{\mathbf{x}}_i$ to be as close to \mathbf{x}_i as possible

- Consider the case when the inputs are real valued
- The objective of the autoencoder is to reconstruct $\hat{\mathbf{x}}_i$ to be as close to \mathbf{x}_i as possible
- This can be formalized using the following objective function:

$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^n (\hat{x}_{ij} - x_{ij})^2$$

- Consider the case when the inputs are real valued
- The objective of the autoencoder is to reconstruct $\hat{\mathbf{x}}_i$ to be as close to \mathbf{x}_i as possible
- This can be formalized using the following objective function:

$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^n (\hat{x}_{ij} - x_{ij})^2$$

$$i.e., \min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

- Consider the case when the inputs are real valued
- The objective of the autoencoder is to reconstruct $\hat{\mathbf{x}}_i$ to be as close to \mathbf{x}_i as possible
- This can be formalized using the following objective function:

$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^n (\hat{x}_{ij} - x_{ij})^2$$

i.e.,
$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

 We can then train the autoencoder just like a regular feedforward network using backpropagation

- Consider the case when the inputs are real valued
- The objective of the autoencoder is to reconstruct $\hat{\mathbf{x}}_i$ to be as close to \mathbf{x}_i as possible
- This can be formalized using the following objective function:

$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^n (\hat{x}_{ij} - x_{ij})^2$$

i.e.,
$$\min_{W,W^*,\mathbf{c},\mathbf{b}} \frac{1}{m} \sum_{i=1}^m (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

- We can then train the autoencoder just like a regular feedforward network using backpropagation
- All we need is a formula for $\frac{\partial \mathcal{L}(\theta)}{\partial W^*}$ and $\frac{\partial \mathcal{L}(\theta)}{\partial W}$ which we will see now

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$W^*$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{a}_1$$

$$W^*$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\bullet \ \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \left[\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W} \right]$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

•
$$\frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{\hat{x}_i}}$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{a}_1$$

$$W^*$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\bullet \ \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \left[\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W} \right]$$

$$\begin{split} \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} &= \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{\hat{x}_i}} \\ &= \nabla_{\mathbf{\hat{x}_i}} \{ (\mathbf{\hat{x}_i} - \mathbf{x_i})^T (\mathbf{\hat{x}_i} - \mathbf{x_i}) \} \end{split}$$

$$\mathcal{L}(\theta) = (\hat{\mathbf{x}}_i - \mathbf{x}_i)^T (\hat{\mathbf{x}}_i - \mathbf{x}_i)$$

$$\mathbf{h}_2 = \hat{\mathbf{x}}_i$$

$$\mathbf{h}_1$$

$$\mathbf{h}_1$$

$$\mathbf{h}_0 = \mathbf{x}_i$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \boxed{\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \quad \frac{\partial \mathcal{L}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \left[\frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W} \right]$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{\hat{x}_i}}
= \nabla_{\mathbf{\hat{x}_i}} \{ (\mathbf{\hat{x}_i} - \mathbf{x_i})^T (\mathbf{\hat{x}_i} - \mathbf{x_i}) \}
= 2(\mathbf{\hat{x}_i} - \mathbf{x_i})$$

• Consider the case when the inputs are binary

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- ullet For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))\}$$

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))\}$$

• If $x_{ij} = 1$?

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n}(x_{ij}\log\hat{x}_{ij}+(1-x_{ij})\log(1-\hat{x}_{ij}))\}$$

- If $x_{ij} = 1$?
- If $x_{ij} = 0$?

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))\}$$

- If $x_{ij} = 1$?
- If $x_{ij} = 0$?

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))\}$$

• Again we need is a formula for $\frac{\partial \mathcal{L}(\theta)}{\partial W^*}$ and $\frac{\partial \mathcal{L}(\theta)}{\partial W}$ to use backpropagation

- If $x_{ij} = 1$?
- If $x_{ij} = 0$?

Indeed the above function will be minimized when $\hat{x}_{ij} = x_{ij}$!

- Consider the case when the inputs are binary
- We use a sigmoid decoder which will produce outputs between 0 and 1, and can be interpreted as probabilities.
- For a single n-dimensional i^{th} input we can use the following loss function

$$\min\{-\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))\}$$

• Again we need is a formula for $\frac{\partial \mathcal{L}(\theta)}{\partial W^*}$ and $\frac{\partial \mathcal{L}(\theta)}{\partial W}$ to use backpropagation

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}_i}$$

$$\mathbf{a_2}$$

$$\mathbf{h_1}$$

$$\mathbf{a_1}$$

$$\mathbf{h_0} = \mathbf{x_i}$$

L20pt

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}}_{\mathbf{i}}$$

$$\mathbf{h_2}$$

$$\mathbf{h_1}$$

$$\mathbf{h_0} = \mathbf{x_i}$$

•
$$\frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \frac{\partial \mathbf{a_2}}{\partial W^*}$$

L20pt

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}}_{ij}$$

$$\mathbf{h_1}$$

$$\mathbf{a_1}$$

$$W^*$$

$$\bullet \ \, \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \ \, \frac{\partial \mathcal{L}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W}}$$

L20pt

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}}_{i}$$

$$\mathbf{a_2}$$

$$\mathbf{h_1}$$

$$\mathbf{a_1}$$

$$\mathbf{h_0} = \mathbf{x_i}$$

$$\bullet \ \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \left[\frac{\partial \mathbf{a_2}}{\partial W^*} \right]$$

$$\bullet \ \, \frac{\partial \mathcal{L}(\theta)}{\partial W} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W}}$$

• We have already seen how to calculate the expressions in the square boxes when we learnt BP

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}}_{i}$$

$$\mathbf{h_1}$$

$$\mathbf{h_1}$$

$$\mathbf{h_0} = \mathbf{x}_{i}$$

$$W^*$$

L20pt

$$\bullet \ \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \ \, \frac{\partial \mathscr{L}(\theta)}{\partial W} = \frac{\partial \mathscr{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W}}$$

- We have already seen how to calculate the expressions in the square boxes when we learnt BP
- The first two terms on RHS can be computed as:

$$\frac{\partial \hat{\mathcal{L}}(\theta)}{\partial h_{2j}} = -\frac{x_{ij}}{\hat{x}_{ij}} + \frac{1 - x_{ij}}{1 - \hat{x}_{ij}}$$
$$\frac{\partial h_{2j}}{\partial a_{2j}} = \sigma(a_{2j})(1 - \sigma(a_{2j}))$$

$$\mathcal{L}(\theta) = -\sum_{j=1}^{n} (x_{ij} \log \hat{x}_{ij} + (1 - x_{ij}) \log(1 - \hat{x}_{ij}))$$

$$\mathbf{h_2} = \hat{\mathbf{x}_i}$$

$$\mathbf{h_1}$$

$$\mathbf{a_1}$$

$$W^*$$

$$L20pt\frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} = \frac{\partial \mathcal{L}(\theta)}{\partial h_{21}} \frac{\partial \mathcal{L}(\theta)}{\partial h_{22}} : \frac{\partial \mathcal{L}(\theta)}{\partial h_{2n}}$$

 $h_0 = x_i$

$$\bullet \ \, \frac{\partial \mathcal{L}(\theta)}{\partial W^*} = \frac{\partial \mathcal{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial W^*}}$$

$$\bullet \ \, \frac{\partial \mathscr{L}(\theta)}{\partial W} = \frac{\partial \mathscr{L}(\theta)}{\partial \mathbf{h_2}} \frac{\partial \mathbf{h_2}}{\partial \mathbf{a_2}} \boxed{\frac{\partial \mathbf{a_2}}{\partial \mathbf{h_1}} \frac{\partial \mathbf{h_1}}{\partial \mathbf{a_1}} \frac{\partial \mathbf{a_1}}{\partial W}}$$

- We have already seen how to calculate the expressions in the square boxes when we learnt BP
- The first two terms on RHS can be computed as:

$$\frac{\partial \mathcal{L}(\theta)}{\partial h_{2j}} = -\frac{x_{ij}}{\hat{x}_{ij}} + \frac{1 - x_{ij}}{1 - \hat{x}_{ij}}$$
$$\frac{\partial h_{2j}}{\partial a_{2j}} = \sigma(a_{2j})(1 - \sigma(a_{2j}))$$