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An autoencoder is a special type of
feed forward neural network which
does the following

Encodes its input x; into a hidden
representation h

Decodes the input again from this
hidden representation

The model is trained to minimize a
certain loss function which will ensure
that X; is close to x; (we will see some
such loss functions soon)
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o Let us consider the case where

< > %5 dim(h) < dim(x;)

T o If we are still able to reconstruct X;
perfectly from h, then what does it

@ Q Q @ h say about h?

W T @ h is a loss-free encoding of x;. It cap-
tures all the important characteristics
< > Xi of x;
e Do you see an analogy with PCA?
h = g(Wx; + b)

% = f(W*h + c)

An autoencoder where dim(h) < dim(x;) is
called an under complete autoencoder J
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W T @ In such a case the autoencoder could

learn a trivial encoding by simply

< Q @ h copying x; into h and then copying
W T h into X;

@ Such an identity encoding is useless

< > Xi in practice as it does not really tell us

anything about the important char-
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Xi=f(W'h+c)

An autoencoder where dim(h) > dim(x;) is
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W T %; = tanh(W*h + ¢)
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< > = %; = logistic(W*h + ¢)

025 05 125 35 4.5 e What will logistic and tanh do?

(real valued inputs) o They will restrict the reconstruc-
ted %; to lie between [0,1] or [-1,1]

whereas we want X; € R"

Again, g is typically chosen as the
sigmoid function J
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w T struct X; to be as close to x; as possible
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@ We can then train the autoencoder just like
a regular feedforward network using back-

propagation
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@ All we need is a formula for <5<

which we will see now
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Indeed the above function will be
minimized when &;; = z;; !
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