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Module 7.1: Introduction to Autoencoders
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An autoencoder is a special type of
feed forward neural network which
does the following

Encodes its input xi into a hidden
representation h

Decodes the input again from this
hidden representation

The model is trained to minimize a
certain loss function which will ensure
that x̂i is close to xi (we will see some
such loss functions soon)
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An autoencoder where dim(h) < dim(xi) is
called an under complete autoencoder
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An autoencoder where dim(h) < dim(xi) is
called an under complete autoencoder

Let us consider the case where
dim(h) < dim(xi)

If we are still able to reconstruct x̂i

perfectly from h, then what does it
say about h?

h is a loss-free encoding of xi. It cap-
tures all the important characteristics
of xi

Do you see an analogy with PCA?
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An autoencoder where dim(h) ≥ dim(xi) is
called an over complete autoencoder

Let us consider the case when
dim(h) ≥ dim(xi)

In such a case the autoencoder could
learn a trivial encoding by simply
copying xi into h and then copying
h into x̂i

Such an identity encoding is useless
in practice as it does not really tell us
anything about the important char-
acteristics of the data
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0 1 1 0 1

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h+ c)

(binary inputs)

g is typically chosen as the sigmoid
function

Suppose all our inputs are binary
(each xij ∈ {0, 1})
Which of the following functions
would be most apt for the decoder?

x̂i = tanh(W ∗h + c)

x̂i = W ∗h + c

x̂i = logistic(W ∗h + c)

Logistic as it naturally restricts all
outputs to be between 0 and 1
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0.25 0.5 1.25 3.5 4.5

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h+ c)

(real valued inputs)

Again, g is typically chosen as the
sigmoid function

Suppose all our inputs are real (each
xij ∈ R)

Which of the following functions
would be most apt for the decoder?

x̂i = tanh(W ∗h + c)

x̂i = W ∗h + c

x̂i = logistic(W ∗h + c)

What will logistic and tanh do?

They will restrict the reconstruc-
ted x̂i to lie between [0,1] or [-1,1]
whereas we want x̂i ∈ Rn
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Choice of loss function
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xi

W

h

W ∗

x̂i

h = g(Wxi + b)

x̂i = f(W ∗h+ c)

Consider the case when the inputs are real
valued

The objective of the autoencoder is to recon-
struct x̂i to be as close to xi as possible

This can be formalized using the following
objective function:

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

i.e., min
W,W∗,c,b

1

m

m∑
i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder just like
a regular feedforward network using back-
propagation

All we need is a formula for ∂L (θ)
∂W∗ and ∂L (θ)

∂W

which we will see now
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L (θ) = (x̂i − xi)
T (x̂i − xi)

h0 = xi

h1
a1

h2 = x̂i
a2

W

W ∗

Note that the loss function is
shown for only one training
example.

∂L (θ)

∂W ∗ =
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂W ∗

∂L (θ)

∂W
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂h1

∂h1

∂a1

∂a1
∂W

We have already seen how to calculate the expres-
sion in the boxes when we learnt backpropagation

∂L (θ)

∂h2
=
∂L (θ)

∂x̂i

= ∇x̂i
{(x̂i − xi)

T (x̂i − xi)}
= 2(x̂i − xi)
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0 1 1 0 1

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h+ c)

(binary inputs)

If xij = 1 ?

If xij = 0 ?

Consider the case when the inputs are
binary

We use a sigmoid decoder which will
produce outputs between 0 and 1, and
can be interpreted as probabilities.

For a single n-dimensional ith input we
can use the following loss function

min{−
n∑
j=1

(xij log x̂ij + (1− xij) log(1− x̂ij))}

Again we need is a formula for ∂L (θ)
∂W∗ and

∂L (θ)
∂W to use backpropagation
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L (θ) = −
n∑
j=1

(xij log x̂ij + (1− xij) log(1− x̂ij))

h0 = xi

h1
a1

h2 = x̂i
a2

W

W ∗

L20pt

∂L (θ)

∂h2
=
∂L (θ)

∂h21

∂L (θ)

∂h22

...
∂L (θ)

∂h2n

∂L (θ)

∂W ∗ =
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂W ∗

∂L (θ)

∂W
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂h1

∂h1

∂a1

∂a1
∂W

We have already seen how to
calculate the expressions in the
square boxes when we learnt BP

The first two terms on RHS can be
computed as:
∂L (θ)

∂h2j
= −xij

x̂ij
+

1− xij
1− x̂ij

∂h2j
∂a2j

= σ(a2j)(1− σ(a2j))
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