Module 7.2: Link between PCA and Autoencoders • We will now see that the encoder part of an autoencoder is equivalent to PCA if we - We will now see that the encoder part of an autoencoder is equivalent to PCA if we - use a linear encoder - We will now see that the encoder part of an autoencoder is equivalent to PCA if we - use a linear encoder - use a linear decoder - We will now see that the encoder part of an autoencoder is equivalent to PCA if we - use a linear encoder - use a linear decoder - $\bullet\,$ use squared error loss function - We will now see that the encoder part of an autoencoder is equivalent to PCA if we - use a linear encoder - use a linear decoder - use squared error loss function - normalize the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ • First let us consider the implication of normalizing the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ • First let us consider the implication of normalizing the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ • The operation in the bracket ensures that the data now has 0 mean along each dimension j (we are subtracting the mean) • First let us consider the implication of normalizing the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ - The operation in the bracket ensures that the data now has 0 mean along each dimension j (we are subtracting the mean) - Let X' be this zero mean data matrix then what the above normalization gives us is $X = \frac{1}{\sqrt{m}}X'$ • First let us consider the implication of normalizing the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ - The operation in the bracket ensures that the data now has 0 mean along each dimension j (we are subtracting the mean) - Let X' be this zero mean data matrix then what the above normalization gives us is $X = \frac{1}{\sqrt{m}}X'$ - Now $(X)^T X = \frac{1}{m} (X')^T X'$ is the covariance matrix (recall that covariance matrix plays an important role • First we will show that if we use linear decoder and a squared error loss function then - First we will show that if we use linear decoder and a squared error loss function then - The optimal solution to the following objective function - First we will show that if we use linear decoder and a squared error loss function then - The optimal solution to the following objective function $$\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2$$ - First we will show that if we use linear decoder and a squared error loss function then - The optimal solution to the following objective function $$\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2$$ is obtained when we use a linear encoder. $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{W^*H} (\|X - HW^*\|_F)^2$$ $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{W^*H} (\|X - HW^*\|_F)^2 \qquad \|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$ $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{W^*H} (\|X - HW^*\|_F)^2 \qquad \|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$ (just writing the expression (1) in matrix form and using the definition of $||A||_F$) (we are ignoring the biases) $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{W^*H} (\|X - HW^*\|_F)^2 \qquad \|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$ (just writing the expression (1) in matrix form and using the definition of $||A||_F$) (we are ignoring the biases) • From SVD we know that optimal solution to the above problem is given by $$HW^* = U_{\cdot, \leq k} \Sigma_{k, k} V_{\cdot, \leq k}^T$$ $$\min_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2 \tag{1}$$ $$\min_{W^*H} (\|X - HW^*\|_F)^2 \qquad \|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$ (just writing the expression (1) in matrix form and using the definition of $||A||_F$) (we are ignoring the biases) • From SVD we know that optimal solution to the above problem is given by $$HW^* = U_{\cdot, \leq k} \Sigma_{k, k} V_{\cdot, \leq k}^T$$ • By matching variables one possible solution is $$H = U_{\cdot, \le k} \Sigma_{k,k}$$ $$W^* = V_{\cdot, \le k}^T$$ $$H = U_{\cdot, \leq k} \Sigma_{k,k}$$ $$\begin{split} H &= U_{.,\leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{.,\leq K} \Sigma_{k,k} \\ \end{split} \qquad (pre-multiplying \ (XX^T)(XX^T)^{-1} &= I) \end{split}$$ $$\begin{split} H &= U_{., \leq k} \Sigma_{k, k} \\ &= (XX^T)(XX^T)^{-1} U_{., \leq K} \Sigma_{k, k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{., \leq k} \Sigma_{k, k} & (using \ X = U\Sigma V^T) \end{split}$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \end{split}$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & ((ABC)^{-1} = C^{-1}B^{-1}A^{-1}) \end{split}$$ $$\begin{split} H &= U_{.,\leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{.,\leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V \Sigma^T U^T)^{-1} U_{.,\leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{.,\leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{.,\leq k} \Sigma_{k,k} & ((ABC)^{-1} = C^{-1}B^{-1}A^{-1}) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{.,\leq k} \Sigma_{k,k} & (U^T U = I) \end{split}$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & ((ABC)^{-1} = C^{-1}B^{-1}A^{-1}) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T \Sigma^{T^{-1}} \Sigma^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & ((AB)^{-1} = B^{-1}A^{-1}) \end{split}$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & ((ABC)^{-1} = C^{-1}B^{-1}A^{-1}) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T \Sigma^{T^{-1}} \Sigma^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & ((AB)^{-1} = B^{-1}A^{-1}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T \Sigma^{T^{-1}} \Sigma^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k} \\ &= XV \Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k} \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k$$ $$\begin{split} H &= U_{.,\leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{.,\leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V\Sigma^T U^T)^{-1} U_{.,\leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{.,\leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{.,\leq k} \Sigma_{k,k} & ((ABC)^{-1} = C^{-1}B^{-1}A^{-1}) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{.,\leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T \Sigma^{T^{-1}} \Sigma^{-1} U^T U_{.,\leq k} \Sigma_{k,k} & (U^T U_{.,\leq k} \Sigma_{k,k} \\ &= XV \Sigma^{-1} I_{.,\leq k} \Sigma_{k,k} & (U^T U_{.,\leq k} \Sigma_{k,k} \\ &= XV I_{.,\leq k} & (\Sigma^{-1} I_{.,\leq k} \Sigma_{k,k}) \\ &= XV I_{.,\leq k} & (\Sigma^{-1} I_{.,\leq k} \Sigma_{k,k}) \end{split}$$ $$\begin{split} H &= U_{\cdot, \leq k} \Sigma_{k,k} \\ &= (XX^T)(XX^T)^{-1} U_{\cdot, \leq K} \Sigma_{k,k} & (pre\text{-multiplying } (XX^T)(XX^T)^{-1} = I) \\ &= (XV\Sigma^T U^T)(U\Sigma V^T V \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (using \ X = U\Sigma V^T) \\ &= XV\Sigma^T U^T (U\Sigma \Sigma^T U^T)^{-1} U_{\cdot, \leq k} \Sigma_{k,k} & (V^T V = I) \\ &= XV\Sigma^T U^T U(\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T (\Sigma \Sigma^T)^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U = I) \\ &= XV\Sigma^T \Sigma^{T^{-1}} \Sigma^{-1} U^T U_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k} \\ &= XV \Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k} & (U^T U_{\cdot, \leq k} \Sigma_{k,k} \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \\ &= XV I_{\cdot, \leq k} & (\Sigma^{-1} I_{\cdot, \leq k} \Sigma_{k,k}) \end{split}$$ Thus H is a linear transformation of X and $W = V_{., \le k}$ • We have encoder $W = V_{., \le k}$ - We have encoder $W = V_{., \le k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - We have encoder $W = V_{., \le k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - ullet From PCA, we know that P is the matrix of the eigen vectors of the covariance matrix - We have encoder $W = V_{\cdot, \leq k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - ullet From PCA, we know that P is the matrix of the eigen vectors of the covariance matrix - We saw earlier that, if entries of X are normalized by - We have encoder $W = V_{., \leq k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - ullet From PCA, we know that P is the matrix of the eigen vectors of the covariance matrix - We saw earlier that, if entries of X are normalized by $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ - We have encoder $W = V_{., \leq k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - ullet From PCA, we know that P is the matrix of the eigen vectors of the covariance matrix - We saw earlier that, if entries of X are normalized by $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ then X^TX is indeed the covariance matrix - We have encoder $W = V_{., \leq k}$ - From SVD, we know that V is the matrix of eigen vectors of X^TX - ullet From PCA, we know that P is the matrix of the eigen vectors of the covariance matrix - We saw earlier that, if entries of X are normalized by $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$ then X^TX is indeed the covariance matrix • Thus, the encoder matrix for linear autoencoder (W) and the projection matrix(P) for PCA could indeed be the same. Hence proved The encoder of a linear autoencoder is equivalent to PCA if we • use a linear encoder - use a linear encoder - use a linear decoder - use a linear encoder - use a linear decoder - ullet use a squared error loss function - use a linear encoder - use a linear decoder - use a squared error loss function - and normalize the inputs to - use a linear encoder - use a linear decoder - use a squared error loss function - and normalize the inputs to $$\hat{x}_{ij} = \frac{1}{\sqrt{m}} \left(x_{ij} - \frac{1}{m} \sum_{k=1}^{m} x_{kj} \right)$$