Module 7.2: Link between PCA and Autoencoders
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First let us consider the implication
of normalizing the inputs to

1 1 &
Tij = NG (xij - ;ﬂfk])

The operation in the bracket ensures
that the data now has 0 mean along
each dimension j (we are subtracting
the mean)

Let X' be this zero mean data mat-
rix then what the above normaliza—
tion gives us is X = fX

Now (X)TX = L(X)TX' is the co-
variance matrix (recall that covari-

ance matrix plays an important role

in PCA)
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objective function
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is obtained when we use a linear en-
coder.
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i=1 j=1
@ This is equivalent to

min (| X — HW”|p)? Al =
W+*H

(just writing the expression (1) in matrix form and using the definition of ||A||z) (we
are ignoring the biases)

@ From SVD we know that optimal solution to the above problem is given by
HW* = U.,gkzk,kv_?%k
@ By matching variables one possible solution is

H=U <Xk
W = V.,Tgk
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H=U <xXkk
= (XXTYXXTY WU xSk (pre-multiplying (X XT)(XXT)"' =1)
= (xXvTuh)(UsvTvsTuT) U <1k (using X = URVT)
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H=XV

Thus H is a linear transformation of X and W =V, <4,
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e We have encoder W =V <,

From SVD, we know that V is the matrix of eigen vectors of X7 X

o From PCA, we know that P is the matrix of the eigen vectors of the covariance
matrix

o We saw earlier that, if entries of X are normalized by

1 1 —
Ty = 7\/5 (l‘ij T ;xk3>

then X7 X is indeed the covariance matrix

@ Thus, the encoder matrix for linear autoencoder(W) and the projection
matrix(P) for PCA could indeed be the same. Hence proved
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