Module 7.3: Regularization in autoencoders
(Motivation)






pen even in undercomplete autoen-
coders it is an even more serious prob-
T lem for overcomplete auto encoders
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W T then h to X;

< > Xj e To avoid poor generalization, we need
to introduce regularization
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@ The simplest solution is to add a Leo-
< > X regularization term to the objective
T function
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@ The simplest solution is to add a Lo-
< > X regularization term to the objective
function
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< e This is very easy to implement and
! just adds a term AW to the gradient
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@ Another trick is to tie the weights of
< > X; the encoder and decoder
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the encoder and decoder i.e., W* =
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@ Another trick is to tie the weights of

< > X the encoder and decoder i.e., W* =
WT
W T o This effectively reduces the capacity
@ Q Q Q O @ h of Autoencoder and acts as a regular-
izer
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