Module 7.4: Denoising Autoencoders
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@ A denoising encoder simply corrupts
the input data using a probabilistic
process (P(Z;j]|z;;)) before feeding it
to the network

o A simple P(Z;j|x;;) used in practice
is the following

P(zij = 0lzij) = q
P(Zy; = wijlwi) =1—q
o In other words, with probability ¢ the

input is flipped to 0 and with probab-
ility (1 — q) it is retained as it is



o How does this help ?
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o How does this help ?

@ This helps because the objective is
still to reconstruct the original (un-
corrupted) x;
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and then into x; (the objective func-
tion will not be minimized by doing
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o How does this help ?

< > % e This helps because the objective is
still to reconstruct the original (un-

corrupted) x;
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< > % o It no longer makes sense for the model
to copy the corrupted x; into h(x;)
TP(@HJUU) and then into x; (the objective func-
< > X; tion will not be minimized by doing
s0)

For example, it will have to learn to o Instead the model will now have to
reconstruct a corrupted x;; correctly by capture the characteristics of the data

relying on its interactions with other correctly.

elements of x;



We will now see a practical application in which AEs are used and then compare
Denoising Autoencoders with regular autoencoders J
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Figure: Basic approach(we use raw data as input
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Figure: AE approach (first learn important
characteristics of data)
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Figure: AE approach (and then train a classifier on
top of this hidden representation)



We will now see a way of visualizing AEs and use this visualization to compare
different AEs J




o We can think of each neuron as a filter which
will fire (or get maximally) activated for a cer-
tain input configuration x;
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o For example,

h, = o(W{'x;) [ignoring bias b]

Where W1 is the trained vector of weights con-
necting the input to the first hidden neuron
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For example,

h, = o(W{'x;) [ignoring bias b]
Where W1 is the trained vector of weights con-
necting the input to the first hidden neuron

What values of x; will cause h; to be max-
imum (or maximally activated)

Suppose we assume that our inputs are nor-
malized so that [|x;]| =1
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@ We can think of each neuron as a filter which
will fire (or get maximally) activated for a cer-

tain input configuration x;

1
@\Q O @ X o For example,
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< > X; Where W is the trained vector of weights con-
necting the input to the first hidden neuron

o What values of x; will cause h; to be max-
imum (or maximally activated)

max {W{x;} @ Suppose we assume that our inputs are nor-
S malized so that ||x;|| =1
st x| =% %=1
Solution: x; = L
WIW,
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< > A @ Thus the inputs
X;

Wi Wa Wh
X; = y yee e
@0 O O» g, g
/ \\ will respectively cause hidden neurons 1 to n
< > X; to maximally fire
o Let us plot these images (x;’s) which maxim-

ally activate the first k£ neurons of the hidden
representations learned by a vanilla autoen-
max (Wix,} coder and different denoising autoencoders

st |xll? = xTxi = 1 o These x;’s are computed by the above formula
' ' Vlvl using the weights (W71, Wy ... Wy) learned by

Solution: x; = ———— .
¢ WIW, the respective autoencoders




Figure: Vanilla AE
(No noise)

Figure: 25% Denoising
AE (q=0.25)

Figure: 50% Denoising
AE (q=0.5)
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o The vanilla AE does not learn many meaningful patterns



Figure: Vanilla AE
(No noise)

Figure: 25% Denoising
AE (q=0.25)

Figure: 50% Denoising
AE (q=0.5)
o The vanilla AE does not learn many meaningful patterns
@ The hidden neurons of the denoising AEs seem to act like pen-stroke detectors

would expect in a’0’ or a '2’ or a '3’ or a '8’ or a ’9’)

(for example, in the highlighted neuron the black region is a stroke that you
=] = - = = DA™ 11/13
o



Figure: Vanilla AE Figure: 25% Denoising

Figure: 50% Denoising
(No noise) AE (¢q=0.25) AE (q=0.5)

o The vanilla AE does not learn many meaningful patterns

@ The hidden neurons of the denoising AEs seem to act like pen-stroke detectors
(for example, in the highlighted neuron the black region is a stroke that you
would expect in a’0’ or a '2’ or a '3’ or a '8’ or a ’9’)

@ As the noise increases the filters become more wide because the neuron has to
rely on more adjacent pixels to feel confident about a str%ke
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A e We saw one form of P(z;j|x;;) which flips a
Xj fraction g of the inputs to zero

T @ Another way of corrupting the inputs is to add
@ Q Q Q Q @ b a Gaussian noise to the input
T 51']' = + JV(O, 1)
% o We will now use such a denoising AE on a
1

different dataset and see their performance
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@ The hidden neurons essentially behave like edge detectors
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Figure: Weight decay

filters

Figure: AE filters

Figure: Data

@ The hidden neurons essentially behave like edge detectors

@ PCA does not give such edge detectors



