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Module 7.4: Denoising Autoencoders
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xi

x̃i

h

x̂i

P (x̃ij |xij)

A denoising encoder simply corrupts
the input data using a probabilistic
process (P (x̃ij |xij)) before feeding it
to the network

A simple P (x̃ij |xij) used in practice
is the following

P (x̃ij = 0|xij) = q

P (x̃ij = xij |xij) = 1− q

In other words, with probability q the
input is flipped to 0 and with probab-
ility (1− q) it is retained as it is
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P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.



3/13

xi

x̃i

h

x̂i

P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.



3/13

xi

x̃i

h

x̂i

P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.



3/13

xi

x̃i

h

x̂i

P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.



3/13

xi

x̃i

h

x̂i

P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.



4/13

We will now see a practical application in which AEs are used and then compare
Denoising Autoencoders with regular autoencoders
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Task: Hand-written digit
recognition

Figure: MNIST Data

0 1 2 3 9

|xi| = 784 = 28× 28

28*28

Figure: Basic approach(we use raw data as input
features)
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Task: Hand-written digit
recognition

Figure: MNIST Data

|xi| = 784 = 28× 28

x̂i ∈ R784

h ∈ Rd

Figure: AE approach (first learn important
characteristics of data)
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Task: Hand-written digit
recognition

Figure: MNIST Data

0 1 2 3 9

|xi| = 784 = 28× 28

h ∈ Rd

Figure: AE approach (and then train a classifier on
top of this hidden representation)
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We will now see a way of visualizing AEs and use this visualization to compare
different AEs
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xi

h

x̂i

max
xi

{WT
1 xi}

s.t. ||xi||2 = xT
i xi = 1

Solution: xi =
W1√
WT

1 W1

We can think of each neuron as a filter which
will fire (or get maximally) activated for a cer-
tain input configuration xi

For example,

h1 = σ(W T
1 xi) [ignoring bias b]

Where W1 is the trained vector of weights con-
necting the input to the first hidden neuron

What values of xi will cause h1 to be max-
imum (or maximally activated)

Suppose we assume that our inputs are nor-
malized so that ‖xi‖ = 1
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xi

h

x̂i

max
xi

{WT
1 xi}

s.t. ||xi||2 = xT
i xi = 1

Solution: xi =
W1√
WT

1 W1

Thus the inputs

xi =
W1√
W T

1 W1

,
W2√
W T

2 W2

, . . .
Wn√
W T
nWn

will respectively cause hidden neurons 1 to n
to maximally fire

Let us plot these images (xi’s) which maxim-
ally activate the first k neurons of the hidden
representations learned by a vanilla autoen-
coder and different denoising autoencoders

These xi’s are computed by the above formula
using the weights (W1,W2 . . .Wk) learned by
the respective autoencoders
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Figure: Vanilla AE
(No noise)

Figure: 25% Denoising
AE (q=0.25)

Figure: 50% Denoising
AE (q=0.5)

The vanilla AE does not learn many meaningful patterns

The hidden neurons of the denoising AEs seem to act like pen-stroke detectors
(for example, in the highlighted neuron the black region is a stroke that you
would expect in a ’0’ or a ’2’ or a ’3’ or a ’8’ or a ’9’)

As the noise increases the filters become more wide because the neuron has to
rely on more adjacent pixels to feel confident about a stroke
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xi

x̃i

h

x̂i

P (x̃ij |xij)

We saw one form of P (x̃ij |xij) which flips a
fraction q of the inputs to zero

Another way of corrupting the inputs is to add
a Gaussian noise to the input

x̃ij = xij + N (0, 1)

We will now use such a denoising AE on a
different dataset and see their performance
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Figure: Data Figure: AE filters
Figure: Weight decay
filters

The hidden neurons essentially behave like edge detectors

PCA does not give such edge detectors
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