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Module 7.5: Sparse Autoencoders
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xi

h

x̂i

A hidden neuron with sigmoid activation will
have values between 0 and 1

We say that the neuron is activated when its
output is close to 1 and not activated when
its output is close to 0.

A sparse autoencoder tries to ensure the
neuron is inactive most of the times.
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xi

h

x̂i

The average value of the
activation of a neuron l is given
by

ρ̂l =
1

m

m∑
i=1

h(xi)l

If the neuron l is sparse (i.e. mostly inactive)
then ρ̂l → 0

A sparse autoencoder uses a sparsity para-
meter ρ (typically very close to 0, say, 0.005)
and tries to enforce the constraint ρ̂l = ρ

One way of ensuring this is to add the follow-
ing term to the objective function

Ω(θ) =

k∑
l=1

ρ log
ρ

ρ̂l
+ (1− ρ) log

1− ρ
1− ρ̂l

When will this term reach its minimum value
and what is the minimum value? Let us plot
it and check.
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Ω(θ)

0.2 ρ̂l

ρ = 0.2

The function will reach its minimum value(s) when ρ̂l = ρ.
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Ω(θ)

0.2 ρ̂l

ρ = 0.2

The function will reach its minimum value(s) when ρ̂l = ρ.
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Ω(θ) =

k∑
l=1

ρlog
ρ

ρ̂l
+ (1− ρ)log

1− ρ
1− ρ̂l

Can be re-written as

Ω(θ) =

k∑
l=1

ρlogρ−ρlogρ̂l+(1−ρ)log(1−ρ)−(1−ρ)log(1−ρ̂l)

By Chain rule:

∂Ω(θ)

∂W
=
∂Ω(θ)

∂ρ̂
.
∂ρ̂

∂W

∂Ω(θ)

∂ρ̂
=

[
∂Ω(θ)
∂ρ̂1

, ∂Ω(θ)
∂ρ̂2

, . . . ∂Ω(θ)
∂ρ̂k

]T
For each neuron l ∈ 1 . . . k in hidden layer, we have

∂Ω(θ)

∂ρ̂l
= − ρ

ρ̂l
+

(1− ρ)

1− ρ̂l

and
∂ρ̂l
∂W

= xi(g
′(WTxi + b))T (see next slide)

Now,

L̂ (θ) = L (θ) + Ω(θ)

L (θ) is the squared error loss or
cross entropy loss and Ω(θ) is the
sparsity constraint.

We already know how to calculate
∂L (θ)
∂W

Let us see how to calculate ∂Ω(θ)
∂W .

Finally,

∂L̂ (θ)

∂W
=
∂L (θ)

∂W
+
∂Ω(θ)

∂W

(and we know how to calculate both
terms on R.H.S)
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Derivation
∂ρ̂

∂W
=
[
∂ρ̂1
∂W

∂ρ̂2
∂W . . . ∂ρ̂k∂W

]
For each element in the above equation we can calculate ∂ρ̂l

∂W (which is the partial
derivative of a scalar w.r.t. a matrix = matrix). For a single element of a matrix Wjl:-

∂ρ̂l
∂Wjl

=
∂
[

1
m

∑m
i=1 g

(
WT

:,lxi + bl
)]

∂Wjl

=
1

m

m∑
i=1

∂
[
g
(
WT

:,lxi + bl
)]

∂Wjl

=
1

m

m∑
i=1

g′
(
WT

:,lxi + bl
)
xij

So in matrix notation we can write it as :

∂ρ̂l
∂W

= xi(g
′(WTxi + b))T


