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Module 8.1 : Bias and Variance
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We will begin with a quick overview of bias, variance and the trade-off between
them.
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Simple

Complex

The points were drawn from a si-
nusoidal function (the true f(x))

Let us consider the problem of fitting a curve
through a given set of points

We consider two models :

Simple
(degree:1) y = f̂(x) = w1x + w0

Complex
(degree:25) y = f̂(x) =

25∑
i=1

wix
i + w0

Note that in both cases we are making an as-
sumption about how y is related to x. We
have no idea about the true relation f(x)

The training data consists of 100 points
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Simple

Complex

The points were drawn from
a sinusoidal function (the true
f(x))

We sample 25 points from the training data
and train a simple and a complex model

We repeat the process ‘k’ times to train
multiple models (each model sees a different
sample of the training data)

We make a few observations from these plots
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Simple models trained on different samples of
the data do not differ much from each other

However they are very far from the true sinus-
oidal curve (under fitting)

On the other hand, complex models trained on
different samples of the data are very different
from each other (high variance)
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Green Line: Average value of f̂(x)
for the simple model
Blue Curve: Average value of f̂(x)
for the complex model
Red Curve: True model (f(x))

Let f(x) be the true model (sinusoidal in this
case) and f̂(x) be our estimate of the model
(simple or complex, in this case) then,

Bias (f̂(x)) = E[f̂(x)] − f(x)

E[f̂(x)] is the average (or expected) value of
the model

We can see that for the simple model the av-
erage value (green line) is very far from the
true value f(x) (sinusoidal function)

Mathematically, this means that the simple
model has a high bias

On the other hand, the complex model has a
low bias
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We now define,

Variance (f̂(x)) = E[(f̂(x) − E[f̂(x)])2]

(Standard definition from statistics)

Roughly speaking it tells us how much the dif-
ferent f̂(x)’s (trained on different samples of
the data) differ from each other

It is clear that the simple model has a low vari-
ance whereas the complex model has a high
variance
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In summary (informally)

Simple model: high bias, low variance

Complex model: low bias, high variance

There is always a trade-off between the bias
and variance

Both bias and variance contribute to the mean
square error. Let us see how
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