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Module 8.10 : Ensemble methods
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features
different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/6

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features
different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/6

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features
different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/6

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters

different features
different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/6

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features

different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/6

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features
different samples of the training data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



4/6

y

ylr1

y

ylr2

y

ylr3

Logistic LogisticLogistic
Regression RegressionRegression

yfinal

Each model trained with a different
sample of the data (sampling with
replacement)

Bagging: form an ensemble using dif-
ferent instances of the same classifier

From a given dataset, construct mul-
tiple training sets by sampling with
replacement (T1, T2, ..., Tk)

Train ith instance of the classifier us-
ing training set Ti
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The error made by the average
prediction of all the models is
1
k

∑
i εi

The expected squared error is :

mse =E[(
1

k

∑
i

εi)
2]

=
1

k2
E[

∑
i

∑
i=j

εiεj +
∑
i

∑
i 6=j

εiεj ]

=
1

k2
E[

∑
i

ε2i +
∑
i

∑
i 6=j

εiεj ]

=
1

k2
(
∑
i

E[ε2i ] +
∑
i

∑
i6=j

E[εiεj ])

=
1

k2
(kV + k(k − 1)C)

=
1

k
V +

k − 1

k
C

When would bagging work?

Consider a set of k LR mod-
els

Suppose that each model
makes an error εi on a test
example

Let εi be drawn from a
zero mean multivariate nor-
mal distribution

V ariance = E[ε2i ] = V

Covariance = E[εiεj ] = C
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mse =
1

k
V +

k − 1

k
C

When would bagging work ?

If the errors of the model are perfectly
correlated then V = C and mse = V
[bagging does not help: the mse of the
ensemble is as bad as the individual
models]

If the errors of the model are inde-
pendent or uncorrelated then C = 0
and the mse of the ensemble reduces
to 1

kV

On average, the ensemble will per-
form at least as well as its individual
members
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