
1/12

Module 8.11 : Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



2/12

Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



2/12

Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/12

Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/12

Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/12

Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/12

Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/12

Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



4/12

Dropout is a technique which ad-
dresses both these issues.

Effectively it allows training several
neural networks without any signific-
ant computational overhead.

Also gives an efficient approximate
way of combining exponentially many
different neural networks.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



4/12

Dropout is a technique which ad-
dresses both these issues.

Effectively it allows training several
neural networks without any signific-
ant computational overhead.

Also gives an efficient approximate
way of combining exponentially many
different neural networks.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



4/12

Dropout is a technique which ad-
dresses both these issues.

Effectively it allows training several
neural networks without any signific-
ant computational overhead.

Also gives an efficient approximate
way of combining exponentially many
different neural networks.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



5/12

Dropout refers to dropping out units

Temporarily remove a node and all its incoming/outgoing connections
resulting in a thinned network

Each node is retained with a fixed probability (typically p = 0.5) for hidden
nodes and p = 0.8 for visible nodes

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



5/12

Dropout refers to dropping out units

Temporarily remove a node and all its incoming/outgoing connections
resulting in a thinned network

Each node is retained with a fixed probability (typically p = 0.5) for hidden
nodes and p = 0.8 for visible nodes

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



5/12

Dropout refers to dropping out units

Temporarily remove a node and all its incoming/outgoing connections
resulting in a thinned network

Each node is retained with a fixed probability (typically p = 0.5) for hidden
nodes and p = 0.8 for visible nodes

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed?

2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed?

2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed?

2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed?

2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed?

2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks

(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks
(2) Sample a different network for each training instance

Let us see how?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



6/12

Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks
(2) Sample a different network for each training instance

Let us see how?
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update?

Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update?

Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update?

Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update?

Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update?

Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



7/12

We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



8/12

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



9/12

Present with
probability p

w1 w2 w3 w4

At training time

Always
present

pw1 pw2 pw3 pw4

At test time

What happens at test time?

Impossible to aggregate the outputs of 2n thinned networks

Instead we use the full Neural Network and scale the output of each node by
the fraction of times it was on during training

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



9/12

Present with
probability p

w1 w2 w3 w4

At training time

Always
present

pw1 pw2 pw3 pw4

At test time

What happens at test time?

Impossible to aggregate the outputs of 2n thinned networks

Instead we use the full Neural Network and scale the output of each node by
the fraction of times it was on during training

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



9/12

Present with
probability p

w1 w2 w3 w4

At training time

Always
present

pw1 pw2 pw3 pw4

At test time

What happens at test time?

Impossible to aggregate the outputs of 2n thinned networks

Instead we use the full Neural Network and scale the output of each node by
the fraction of times it was on during training

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



9/12

Present with
probability p

w1 w2 w3 w4

At training time

Always
present

pw1 pw2 pw3 pw4

At test time

What happens at test time?

Impossible to aggregate the outputs of 2n thinned networks

Instead we use the full Neural Network and scale the output of each node by
the fraction of times it was on during training

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



10/12

Dropout essentially applies a masking
noise to the hidden units

Prevents hidden units from co-
adapting

Essentially a hidden unit cannot rely
too much on other units as they may
get dropped out any time

Each hidden unit has to learn to be
more robust to these random dro-
pouts

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



10/12

Dropout essentially applies a masking
noise to the hidden units

Prevents hidden units from co-
adapting

Essentially a hidden unit cannot rely
too much on other units as they may
get dropped out any time

Each hidden unit has to learn to be
more robust to these random dro-
pouts

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



10/12

Dropout essentially applies a masking
noise to the hidden units

Prevents hidden units from co-
adapting

Essentially a hidden unit cannot rely
too much on other units as they may
get dropped out any time

Each hidden unit has to learn to be
more robust to these random dro-
pouts

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



10/12

Dropout essentially applies a masking
noise to the hidden units

Prevents hidden units from co-
adapting

Essentially a hidden unit cannot rely
too much on other units as they may
get dropped out any time

Each hidden unit has to learn to be
more robust to these random dro-
pouts

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



11/12

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



12/12

Recap

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8


