Module 8.2 : Train error vs Test error
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e Consider a new point (x,y) which was not
seen during training
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e Consider a new point (x,y) which was not
seen during training

e If we use the model f(z) to predict the
value of y then the mean square error is
given by

El(y - f(2))?]

(average square error in predicting y for
many such unseen points)
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e Consider a new point (x,y) which was not
seen during training

e We can show that .
o If we use the model f(x) to predict the

E[(y — f(x))?] = Bias® value of y then the mean square error is
+ Variance given by
+ ¢? (irreducible error)

El(y - f(2))?]

(average square error in predicting y for
many such unseen points)
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e Consider a new point (x,y) which was not
seen during training

e We can show that .
o If we use the model f(x) to predict the

E[(y — f(x))?] = Bias® value of y then the mean square error is
+ Variance given by
+ ¢? (irreducible error)

El(y - f(2))?]

(average square error in predicting y for
many such unseen points)

@ See proof here
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o The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',
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o The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

e However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training
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o The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

e However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

e This gives rise to the following two entities of
interest:
traine ., (say, mean square error)
tester, (say, mean square error)
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(§

model complexity,
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The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:

traine ., (say, mean square error)

tester, (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:

traine ., (say, mean square error)

tester, (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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igh bias

High variance
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The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:

traine ., (say, mean square error)

tester, (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:

traine ., (say, mean square error)

tester, (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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model complexity,

~

Elly - f(2))2] = Bias®
+ Variance

+ o (irreducible error)

The parameters of f(z) (all w;’s) are trained
using a training set {(x;, vi) 7',

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:

traine ., (say, mean square error)

tester, (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure

Mitesh M. Khapra
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Intuitions developed so far

o Let there be n training points and m test (validation) points

. RS :
trainer = E Z(yz - f(xz))2
=1

n+m

testorr = % Z (yi — JE(%))

i=n+1
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Intuitions developed so far

o Let there be n training points and m test (validation) points

. RS :
trainer = E Z;(yz - f(xz))2
i=

n+m

testorr = % Z (yi — JE(%))

i=n+1

o As the model complexity increases traine,, becomes overly optimistic and gives
us a wrong picture of how close f is to f
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Intuitions developed so far

o Let there be n training points and m test (validation) points

. RS :
trainer = E Z(yz - f(xz))2
=1

n+m

testorr = % Z (yi — JE(%))

i=n+1

o As the model complexity increases traine,, becomes overly optimistic and gives
us a wrong picture of how close f is to f

@ The validation error gives the real picture of how close f is to f
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Intuitions developed so far

o Let there be n training points and m test (validation) points

. RS :
trainer = E Z;(yz - f(xz))2
i=

n+m

testorr = % Z (yi — JE(%))

i=n+1

o As the model complexity increases traine,, becomes overly optimistic and gives
us a wrong picture of how close f is to f

@ The validation error gives the real picture of how close f is to f

o We will concretize this intuition mathematically now and eventually show how
to account for the optimism in the training error
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o Let D={z;,y;}"\", then for any
point (z,y) we have,

yi = f(z) + &
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o Let D={z;,y;}"\", then for any
point (z,y) we have,

yi = f(z) + &

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation
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o Let D={z;,y;}"\", then for any
point (z,y) we have,

yi = f(z) + &

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation

e For simplicity, we assume

e~ N(0,0%)
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o Let D={z;,y;}"\", then for any
point (z,y) we have,

yi = f(z) + &

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation

e For simplicity, we assume
e~ N(0,0%)

and of course we do not know f

Mitesh M. Khapra )15 (Deep Learning) : Lecture 8



min o Further we use f to approximate f
o Let D={w;,y:};7", then for any and estimate the parameters using T

point (z,y) we have, C D such that
yi = f(@i) + e yi = f(w:)

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation

e For simplicity, we assume
e~ N(0,0%)

and of course we do not know f
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o Further we use f to approximate f

— L. g XM
° Le‘.c D={wj,y:};=7", then for any and estimate the parameters using T
point (z,y) we have, C D such that

yi = flzi) e yi = f (1)

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation E[(f(%) — f(xl))Q]

@ We are interested in knowing

e For simplicity, we assume
e~ N(0,0%)

and of course we do not know f
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min o Further we use f to approximate f
° Le‘.c D={wj,y:};=7", then for any and estimate the parameters using T
point (z,y) we have, D such that

yi = flzi) e yi = f (1)

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation E[(f(%) — f(xl))Q]

@ We are interested in knowing

e For simplicity, we assume but we cannot estimate this directly
) because we do not know f
e~ N(0,0%)

and of course we do not know f
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min o Further we use f to approximate f
° Le‘.c D={wj,y:};=7", then for any and estimate the parameters using T
point (z,y) we have, D such that

yi = flzi) e yi = f (1)

e which means that y; is related to z;
by some true function f but there is
also some noise ¢ in the relation E[(f(%) — f(xl))Q]

@ We are interested in knowing

e For simplicity, we assume but we cannot estimate this directly
) because we do not know f
e~ N(0,0%)

@ We will see how to estimate this em-
pirically using the observation y; &

and of course we do not know f
prediction g;
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E[(: —vi)*] = El(f(z:) — f(z:) —&:)?]  (yi = fl2:) + )
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E[(: —vi)*] = El(f(z:) — f(z:) —&:)?]  (yi = fl2:) + )

= B[(f(xs) — f(2:))? = 2ei(f 1) — f(@2)) + 7]
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E((gi — y)*) = Bl(f(zi) = fl@:) —=&)?] (s = f(a:) + &)
= B[(f(2:) = f(x:))® = 2ea(f (@) = f () + €]

= E[(f(2:) = f(x:))*] = 2B[ei(f (2:) — f(2:))] + E[€]]
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E[(: —vi)*] = El(f(z:) — f(z:) —&:)?]  (yi = fl2:) + )
= B[(f(z:) — f(2:)* — 2ei(f(xi) — f(z1)) + €7
= B[(f(z:) — f(:))’] — 2B[es(f(2:) — f(x))] + E[e])

CE[(f(ai) = f(@)?] = Elgi —v)?) — Elef] + 2B[&i(f(xi) = (1)) ]
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We will take a small detour to understand how to empirically estimate an
Expectation and then return to our derivation J
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@ Suppose we have observed the goals scored(z) in k matches as
21:2, 22:1, Z3:0, Zk:2
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@ Suppose we have observed the goals scored(z) in k matches as
21:2, 22:1, Z3:0, Zk:2

e Now we can empirically estimate E[z] i.e. the expected number of goals scored
as

1 k
Ez] = EZZZ
i=1
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@ Suppose we have observed the goals scored(z) in k matches as
21:2, 22:1, Z3:0, zk:2

e Now we can empirically estimate E[z] i.e. the expected number of goals scored
as

o Analogy with our derivation: We have a certain number of observations y; &
predictions g; using which we can estimate

Bl —y)*] =
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@ Suppose we have observed the goals scored(z) in k matches as
21:2, 22:1, Z3:0, zk:2

e Now we can empirically estimate E[z] i.e. the expected number of goals scored
as

o Analogy with our derivation: We have a certain number of observations y; &
predictions g; using which we can estimate

Bl —y)*] = o Z(ﬁi —y)?
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. returning back to our derivation )
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

E((f(wi) = f(x:))’]

trueerror
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

~ 1 n+m
El(f(x:) — f@)?] = — > @i—w)? -

i=n+1

trueerror

empirical estimation of error
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ]

)

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m

Bf@) —f@)) = — Y Gi-w? - Y
true error i=n+1 i=n+1

empirical estimation of error  small constant
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m

B@) —f@)P) = — 3 G-l = Y &+ 2 Blalf) - f)]
trueerror =l \in,L = covariance (i, f (z;)—f(x3))

empirical estimation of error  small constant
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m

B@) —f@)P) = — 3 G-l = Y &+ 2 Blalf) - f)]
trueerror =l \in,L = covariance (i, f (z;)—f(x3))

empirical estimation of error  small constant

" covariance(X,Y)
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m
~ 1 . 1 o
Bl(f(x) — f(ﬂﬁi))Q] = m E (Yi — yi)2 T m E 512 + 2 Ele(f(z:) — f(2)) ]
; i=n+1 i=n+1 _ X
rueerror —_——— = covariance (g;,f(x;)—f(z;))

empirical estimation of error  small constant

"+ covariance(X,Y) = E[(X — ux)(Y — py)]
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m

B@) —f@)P) = — 3 G-l = Y &+ 2 Blalf) - f)]
trueerror =l \in,L = covariance (i, f (z;)—f(x3))

empirical estimation of error  small constant

"+ covariance(X,Y) = E[(X — ux)(Y — py)]
= BE[(X)(Y — py)](if px = E[X] = 0)
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m
. 1
E((f(@) = f@)?] = — Z - — > & + 2 Ela(f(w) — f() ]
¢ 7, n+1 z n+1
rueerror —_——— = covariance (g4, f(z;)— f(2i))

empirical estimation of error  small constant

" covariance(X,Y) = E[(X — ,ux)(Y — py)]
El(X)(Y — py)](if px = E[X] =0)

= E[XY] - [X py]
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m
. 1
E((f(@) = f@)?] = — Z - — > & + 2 Ela(f(w) — f() ]
¢ 7, n+1 z n+1
rueerror —_——— = covariance (g4, f(z;)— f(2i))

empirical estimation of error  small constant

" covariance(X,Y) = E[(X — ,ux)(Y — py)]
El(X)(Y — py)](if px = E[X] =0)

= E[XY] - [Xuy] E[XY] - py E[X]
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B((f(:) - f(2))?] = El(gi —v)? — Ele]] + 2E[&i(f(wi) — f(=:)) ] J

@ We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

n+m n+m
. 1
E((f(@) = f@)?] = — Z - — > & + 2 Ela(f(w) — f() ]
¢ 7, n+1 z n+1
rueerror —_——— = covariance (g4, f(z;)— f(2i))

empirical estimation of error  small constant

" covariance(X,Y) = E[(X — ,ux)(Y — py)]
El(X)(Y — py)](if px = E[X] =0)

_ BIXY] - E{Xr] - BIXY] - py E[X] - E[XY]
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E[(f(x:) — f(2:))?]

true‘grror
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant
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E[(f(x:) — f(2:))?]

true‘grror
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal
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E[(f(x:) — f(2:))?]

~~

true error
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
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E[(f(x:) — f(2:))?]

~~

true error
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (f(zi) = fz2))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



E[(f(x:) — f(2:))?]

~~

true error
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
Elei - (f(2:) — f(2:))] = Ele] - E[f (1) — f(1))]
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E[(f(x:) — f(2:))?]

true‘grror
n+m n+m
- Y -y e +2 Ble(f@) — f@) ]
i=n+1 i=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
Elei - (f(2:) — f(2:)] = Eled] - E[f (i) — f(2:))] = 0+ E[f () — f(:))]
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E[(f(x:) — f(2:))?]

true‘grror
n+m n+m
- Y -y e +2 Ble(f@) — f@) ]
i=n+1 i=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
Elei - (f(2:) — f(2:))] = Elei] - E[f (2:) — f(2:))] = 0+ E[f (%) — f(2:))] =0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



E[(f(x:) — f(2:))?]

true‘grror
n+m n+m
- Y -y e +2 Ble(f@) — f@) ]
i=n+1 i=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
S Elei - (f(2i) = f(x0)] = Elei] - E[f (i) — f(2:))] = 0+ E[f () — f(2:))] =0

.. true error = empirical test error + small constant
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E[(f(x:) — f(2:))?]

~~

true error
n+m n+m
- Ly - > & 42 Blalfe) - 1)
i=n+1 1=n+1

= covariance (Ez,f(mi)_f(zi))

empirical estimation of error  small constant

e None of the test observations participated in the estimation of f (z)[the para-
meters of f(x) were estimated only using training datal

L (fx) = f(z1))
L Elei - (f(mi) — f(2:)] = Elei] - E[f (i) — f(2)] = 0- E[f(x;) — f(2:))] =0

*. true error = empirical test error + small constant

e Hence, we should always use a validation set(independent of the training set)
to estimate the error
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Case 2: Using training observations

E[(f(xi) — f(2:))%]

true error
1< 1< A
= 52(1/}—%)2 - 5253 +2 Elei(f(wi) — flxi)) ]
i :,1—/ = covariance (E,,f(acl)—f(xl))
empirical estimation of error small constant
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= 52(1/}—%)2 - 5253 +2 Elei(f(wi) — flxi)) ]
i :,1—/ = covariance (E,,f(acl)—f(xl))
empirical estimation of error small constant

Now, & [ f(x) because & was used for estimating the parameters of f(z)

L Elei - (f(ai) — (i)
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Case 2: Using training observations

E[(f(xi) — f(2:))%]

true error
1< 1< A
= 52(1/}—%)2 - 5253 +2 Elei(f(wi) — flxi)) ]
i :,1—/ = covariance (E,,f(acl)—f(xl))
empirical estimation of error small constant

Now, & [ f(x) because & was used for estimating the parameters of f(z)

L Elei - (f(xi) = f(@:)] # Ele) - E[f () = f ()]
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Case 2: Using training observations

E[(f(xi) — f(2:))%]

true error
1< 1< A
= 52(1/}—%)2 - 5263 +2 Elei(f(wi) — flxi)) ]
i :,1—/ = covariance (sl,f(acl)—f(xl))
empirical estimation of error small constant

Now, & [ f(x) because & was used for estimating the parameters of f(z)

A~

" Elei - (f(xi) = f(@)] # Eled) - E[f (@) = f(:)] # 0

Hence, the empirical train error is smaller than the true error and does not give
a true picture of the error

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



Case 2: Using training observations

E[(f(xi) — f(2:))%]

true error
1< 1< A
= 52(1/}—%)2 - 5263 +2 Elei(f(wi) — flxi)) ]
i :,1—/ = covariance (sl,f(acl)—f(xl))
empirical estimation of error small constant

Now, & [ f(x) because & was used for estimating the parameters of f(z)

A~

" Elei - (f(xi) = f(@)] # Eled) - E[f (@) = f(:)] # 0

Hence, the empirical train error is smaller than the true error and does not give
a true picture of the error

But how is this related to model complexity? Let us see
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