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Module 8.2 : Train error vs Test error
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We can show that

E[(y − f̂(x))2] = Bias2

+ V ariance

+ σ2 (irreducible error)

See proof here

Consider a new point (x, y) which was not
seen during training

If we use the model f̂(x) to predict the
value of y then the mean square error is
given by

E[(y − f̂(x))2]

(average square error in predicting y for
many such unseen points)
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model complexity

er
ro

r

High bias High variance

Sweet spot-
-perfect tradeoff
-ideal model
complexity

E[(y − f̂(x))2] = Bias2

+ V ariance

+ σ2 (irreducible error)

The parameters of f̂(x) (all wi’s) are trained
using a training set {(xi, yi)}ni=1

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:
trainerr (say, mean square error)
testerr (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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Intuitions developed so far

Let there be n training points and m test (validation) points

trainerr =
1

n

n∑
i=1

(yi − f̂(xi))
2

testerr =
1

m

n+m∑
i=n+1

(yi − f̂(xi))

As the model complexity increases trainerr becomes overly optimistic and gives
us a wrong picture of how close f̂ is to f

The validation error gives the real picture of how close f̂ is to f

We will concretize this intuition mathematically now and eventually show how
to account for the optimism in the training error
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Let D={xi, yi}m+n
i=1 , then for any

point (x, y) we have,

yi = f(xi) + εi

which means that yi is related to xi
by some true function f but there is
also some noise ε in the relation

For simplicity, we assume

ε ∼ N (0, σ2)

and of course we do not know f

Further we use f̂ to approximate f
and estimate the parameters using T
⊂ D such that

yi = f̂(xi)

We are interested in knowing

E[(f̂(xi)− f(xi))
2]

but we cannot estimate this directly
because we do not know f

We will see how to estimate this em-
pirically using the observation yi &
prediction ŷi

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



5/12

Let D={xi, yi}m+n
i=1 , then for any

point (x, y) we have,

yi = f(xi) + εi

which means that yi is related to xi
by some true function f but there is
also some noise ε in the relation

For simplicity, we assume

ε ∼ N (0, σ2)

and of course we do not know f

Further we use f̂ to approximate f
and estimate the parameters using T
⊂ D such that

yi = f̂(xi)

We are interested in knowing

E[(f̂(xi)− f(xi))
2]

but we cannot estimate this directly
because we do not know f

We will see how to estimate this em-
pirically using the observation yi &
prediction ŷi
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E[(ŷi − yi)2]

= E[(f̂(xi)− f(xi)− εi)2] (yi = f(xi) + εi)

= E[(f̂(xi)− f(xi))
2 − 2εi(f̂(xi)− f(xi)) + ε2i ]

= E[(f̂(xi)− f(xi))
2]− 2E[εi(f̂(xi)− f(xi))] + E[ε2i ]

∴ E[(f̂(xi)− f(xi))
2] = E[(ŷi − yi)2] − E[ε2i ] + 2E[ εi(f̂(xi)− f(xi)) ]
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We will take a small detour to understand how to empirically estimate an
Expectation and then return to our derivation
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Suppose we have observed the goals scored(z) in k matches as
z1 = 2, z2 = 1, z3 = 0, ... zk = 2

Now we can empirically estimate E[z] i.e. the expected number of goals scored
as

E[z] =
1

k

k∑
i=1

zi

Analogy with our derivation: We have a certain number of observations yi &
predictions ŷi using which we can estimate

E[(ŷi − yi)2] =

1

m

m∑
i=1

(ŷi − yi)2
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E[(ŷi − yi)2] =

1

m

m∑
i=1
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... returning back to our derivation
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E[(f̂(xi)− f(xi))
2] = E[(ŷi − yi)2] − E[ε2i ] + 2E[ εi(f̂(xi)− f(xi)) ]

We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

m

n+m∑
i=n+1

(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

m

n+m∑
i=n+1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

∵ covariance(X,Y )

= E[(X − µX)(Y − µY )]

= E[(X)(Y − µY )](if µX = E[X] = 0)

= E[XY ]− E[XµY ] = E[XY ]− µYE[X] = E[XY ]
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(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

m

n+m∑
i=n+1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

∵ covariance(X,Y )

= E[(X − µX)(Y − µY )]

= E[(X)(Y − µY )](if µX = E[X] = 0)

= E[XY ]− E[XµY ] = E[XY ]− µYE[X] = E[XY ]

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



10/12

E[(f̂(xi)− f(xi))
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Case 1: Using test observations

E[(f̂(xi)− f(xi))
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true error

=
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(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error
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ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

∵ covariance(X,Y )

= E[(X − µX)(Y − µY )]

= E[(X)(Y − µY )](if µX = E[X] = 0)

= E[XY ]− E[XµY ] = E[XY ]− µYE[X] = E[XY ]
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2] = E[(ŷi − yi)2] − E[ε2i ] + 2E[ εi(f̂(xi)− f(xi)) ]

We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

m

n+m∑
i=n+1
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small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

None of the test observations participated in the estimation of f̂(x)[the para-
meters of f̂(x) were estimated only using training data]

∴ ε ⊥ (f̂(xi)− f(xi))

∴ E[εi · (f̂(xi)− f(xi))] = E[εi] · E[f̂(xi)− f(xi))] = 0 · E[f̂(xi)− f(xi))] = 0

∴ true error = empirical test error + small constant

Hence, we should always use a validation set(independent of the training set)
to estimate the error
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Case 2: Using training observations

E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

n

n∑
i=1

(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

n

n∑
i=1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

Now, ε 6⊥ f̂(x) because ε was used for estimating the parameters of f̂(x)

∴ E[εi · (f̂(xi)− f(xi))]

6= E[εi] · E[f̂(xi)− f(xi))] 6= 0

Hence, the empirical train error is smaller than the true error and does not give
a true picture of the error

But how is this related to model complexity? Let us see
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