
1/7

Module 8.3 : True error and Model complexity
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Using Stein’s Lemma (and some trickery) we can show that

1

n

n∑
i=1

εi(f̂(xi) − f(xi)) =
σ2

n

n∑
i=1

∂f̂(xi)

∂yi

When will ∂f̂(xi)
∂yi

be high? When a small change in the observation causes a

large change in the estimation(f̂)

Can you link this to model complexity?

Yes, indeed a complex model will be more sensitive to changes in observations
whereas a simple model will be less sensitive to changes in observations

Hence, we can say that
true error = empirical train error + small constant + Ω(model complexity)
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Let us verify that indeed a
complex model is more sens-
itive to minor changes in the
data

We have fitted a simple
and complex model for some
given data

We now change one of these
data points

The simple model does not
change much as compared to
the complex model
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Hence while training, instead of minimizing the training error Ltrain(θ) we
should minimize

min
w.r.t θ

Ltrain(θ) + Ω(θ) = L (θ)

Where Ω(θ) would be high for complex models and small for simple models

Ω(θ) acts as an approximate for σ2

n

∑n
i=1

∂f̂(xi)
∂yi

This is the basis for all regularization methods

We can show that l1 regularization, l2 regularization, early stopping and inject-
ing noise in input are all instances of this form of regularization.
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model complexity

er
ro

r

High bias High variance

Sweet spot

Ω(θ) should ensure
that model has reas-
onable complexity

σ2

n

∑n
i=1

∂f̂(xi)
∂yi
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Why do we care about this
bias variance tradeoff and
model complexity?

Deep Neural networks are highly complex
models.

Many parameters, many non-linearities.

It is easy for them to overfit and drive training
error to 0.

Hence we need some form of regularization.
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Different forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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