Module 8.3 : True error and Model complexity
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Using Stein’s Lemma (and some trickery) we can show that
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whereas a simple model will be less sensitive to changes in observations
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Using Stein’s Lemma (and some trickery) we can show that
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=D eilf(xi) — fzi) = —
i=1 ; Oyi

o When will %yfi) be high? When a small change in the observation causes a

large change in the estimation(f)
e Can you link this to model complexity?

@ Yes, indeed a complex model will be more sensitive to changes in observations
whereas a simple model will be less sensitive to changes in observations

o Hence, we can say that
true error = empirical train error + small constant + Q(model complexity)
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o Let us verify that indeed a
complex model is more sens-
itive to minor changes in the
data
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o Let us verify that indeed a
complex model is more sens-
itive to minor changes in the

* data

o We have fitted a simple
and complex model for some
given data

e We now change one of these
data points

@ The simple model does not
change much as compared to
the complex model
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e Hence while training, instead of minimizing the training error % qin(0) we
should minimize

min %qin(0) + Q(0) = Z(0)

w.r.t 6
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e Hence while training, instead of minimizing the training error % qin(0) we
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e Where Q(#) would be high for complex models and small for simple models
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@ This is the basis for all regularization methods
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e Hence while training, instead of minimizing the training error % qin(0) we
should minimize

min %qin(0) + Q(0) = Z(0)

w.r.t 6

Where Q(6) would be high for complex models and small for simple models

e (2(0) acts as an approximate for a2 Z?:l 81(;(;1-)

n

@ This is the basis for all regularization methods

@ We can show that [; regularization, I regularization, early stopping and inject-
ing noise in input are all instances of this form of regularization.
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(6) should ensure
that model has reas-
onable complexity
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o Why do we care about this
bias variance tradeoff and
model complexity?
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o Why do we care about this @ Deep Neural networks are highly complex
bias variance tradeoff and models.
model complexity?
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o Why do we care about this @ Deep Neural networks are highly complex
bias variance tradeoff and models.

model complexity? o Many parameters, many non-linearities.

o It is easy for them to overfit and drive training
error to 0.
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o Why do we care about this @ Deep Neural networks are highly complex
bias variance tradeoff and models.
model complexity?

(]

Many parameters, many non-linearities.

(]

It is easy for them to overfit and drive training
error to 0.

e Hence we need some form of regularization.
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Different forms of regularization

o [y regularization
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Different forms of regularization
o [y regularization

o Dataset augmentation
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Different forms of regularization
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o Dataset augmentation

e Parameter Sharing and tying
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Different forms of regularization
o [y regularization

o Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs
o Adding Noise to the outputs
o Early stopping
°

Ensemble methods

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



Different forms of regularization
o [y regularization
o Dataset augmentation
e Parameter Sharing and tying
o Adding Noise to the inputs
Adding Noise to the outputs
Early stopping

°
°
o Ensemble methods
°

Dropout
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