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Module 8.4 : l2 regularization
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Different forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



3/9

For l2 regularization we have,

L̃ (w) = L (w) +
α

2
‖w‖2

For SGD (or its variants), we are interested in

∇L̃ (w) = ∇L (w) + αw

Update rule:

wt+1 = wt − η∇L (wt)− ηαwt

Requires a very small modification to the code

Let us see the geometric interpretation of this
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Assume w∗ is the optimal solution for L (w) [not L̃ (w)] i.e. the solution in
the absence of regularization (w∗ optimal → ∇L (w∗) = 0)

Consider u = w − w∗. Using Taylor series approximation (upto 2nd order)

L (w∗ + u) = L (w∗) + uT∇L (w∗) +
1

2
uTHu

L (w) = L (w∗) + (w − w∗)T∇L (w∗) +
1

2
(w − w∗)TH(w − w∗)

= L (w∗) +
1

2
(w − w∗)TH(w − w∗) (∵ ∇L(w∗) = 0 )

∇L (w) = ∇L (w∗) +H(w − w∗)

= H(w − w∗)

Now,

∇L̃ (w) = ∇L (w) + αw

= H(w − w∗) + αw
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Let w̃ be the optimal solution for L̃(w) [i.e regularized loss]

∵ ∇L̃(w̃) = 0

H(w̃ − w∗) + αw̃ = 0

∴(H + αI)w̃ = Hw∗

∴w̃ = (H + αI)−1Hw∗

Notice that if α→ 0 then w̃ → w∗ [no regularization]

But we are interested in the case when α 6= 0

Let us analyse the case when α 6= 0
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If H is symmetric Positive Semi Definite

H = QΛQT [Q is orthogonal, QQT = QTQ = I]

w̃ = (H + αI)−1Hw∗

= (QΛQT + αI)−1QΛQTw∗

= (QΛQT + αQIQT )−1QΛQTw∗

= [Q(Λ + αI)QT ]−1QΛQTw∗

= QT
−1

(Λ + αI)−1Q−1QΛQTw∗

= Q(Λ + αI)−1ΛQTw∗ (∵ QT
−1

= Q)

w̃ = QDQTw∗

where D = (Λ + αI)−1Λ, is a diagonal matrix which we will see in more detail
soon
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w̃ = Q(Λ + αI)−1ΛQTw∗

= QDQTw∗

(Λ + αI)−1 =



1
λ1+α

1
λ2+α

. . .
1

λn+α


D = (Λ + αI)−1Λ

(Λ + αI)−1Λ =



λ1
λ1+α

λ2
λ2+α

. . .
λn

λn+α



So what is happening here?

w∗ first gets rotated by QT to give
QTw∗

However if α = 0 then Q rotates
QTw∗ back to give w∗

If α 6= 0 then let us see what D
looks like

So what is happening now?
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Each element i of QTw∗ gets scaled
by λi

λi+α
before it is rotated back by

Q

if λi >> α then λi
λi+α

= 1

if λi << α then λi
λi+α

= 0

Thus only significant directions
(larger eigen values) will be retained.

Effective parameters =
n∑
i=1

λi
λi + α

< n
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The weight vector(w∗) is getting rotated to (w̃)

All of its elements are shrinking but some are shrinking more than the others

This ensures that only important features are given high weights
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