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Module 8.9 : Early stopping
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Track the validation error

Have a patience parameter p

If you are at step k and there was
no improvement in validation error in
the previous p steps then stop train-
ing and return the model stored at
step k − p
Basically, stop the training early be-
fore it drives the training error to 0
and blows up the validation error
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Very effective and the mostly widely
used form of regularization

Can be used even with other regular-
izers (such as l2)

How does it act as a regularizer ?

We will first see an intuitive explan-
ation and then a mathematical ana-
lysis
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Recall that the update rule in SGD is

wt+1 = wt − η∇wt

= w0 − η
t∑
i=1

∇wi

Let τ be the maximum value of ∇wi
then

|wt+1 − w0| ≤ ηt|τ |

Thus, t controls how far wt can go
from the initial w0

In other words it controls the space
of exploration
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We will now see a mathematical analysis of this
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Recall that the Taylor series approximation for L (w) is

L (w) = L (w∗) + (w − w∗)T∇L (w∗) +
1

2
(w − w∗)TH(w − w∗)

= L (w∗) +
1

2
(w − w∗)TH(w − w∗) [ w∗ is optimal so ∇L (w∗) is 0 ]

∇(L (w)) = H(w − w∗)

Now the SGD update rule is:

wt = wt−1 − η∇L (wt−1)

= wt−1 − ηH(wt−1 − w∗)
= (I − ηH)wt−1 + ηHw∗
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wt = (I − ηH)wt−1 + ηHw∗

Using EVD of H as H = QΛQT , we get:

wt = (I − ηQΛQT )wt−1 + ηQΛQTw∗

If we start with w0 = 0 then we can show that (See Appendix)

wt = Q[I − (I − εΛ)t]QTw∗

Compare this with the expression we had for optimum W̃ with L2 regularization

w̃ = Q[I − (Λ + αI)−1α]QTw∗

We observe that wt = w̃, if we choose ε,t and α such that

(I − εΛ)t = (Λ + αI)−1α
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Things to be remember

Early stopping only allows t updates to the parameters.

If a parameter w corresponds to a dimension which is important for the loss
L (θ) then ∂L (θ)

∂w will be large

However if a parameter is not important (∂L (θ)
∂w is small) then its updates will

be small and the parameter will not be able to grow large in ‘t′ steps

Early stopping will thus effectively shrink the parameters corresponding to less
important directions (same as weight decay).
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