Module 8.9: Early stopping

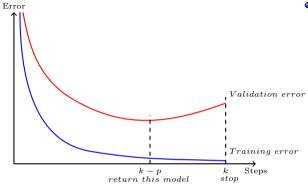
Other forms of regularization

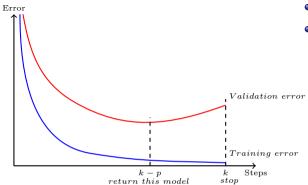
- l_2 regularization
- Dataset augmentation
- Parameter Sharing and tying
- Adding Noise to the inputs
- Adding Noise to the outputs
- Early stopping
- Ensemble methods
- Dropout

Other forms of regularization

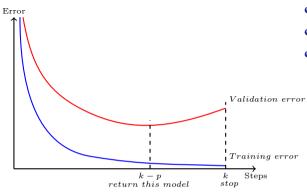
- l_2 regularization
- Dataset augmentation
- Parameter Sharing and tying
- Adding Noise to the inputs
- Adding Noise to the outputs
- Early stopping
- Ensemble methods
- Dropout

• Track the validation error

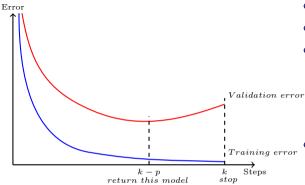




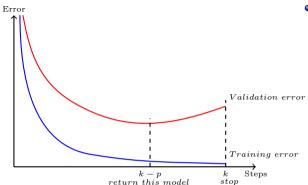
- Track the validation error
- \bullet Have a patience parameter p



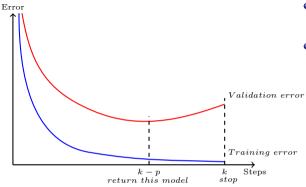
- Track the validation error
- \bullet Have a patience parameter p
- If you are at step k and there was no improvement in validation error in the previous p steps then stop training and return the model stored at step k-p



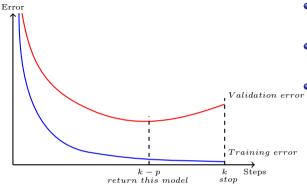
- Track the validation error
- \bullet Have a patience parameter p
- If you are at step k and there was no improvement in validation error in the previous p steps then stop training and return the model stored at step k-p
- Basically, stop the training early before it drives the training error to 0 and blows up the validation error



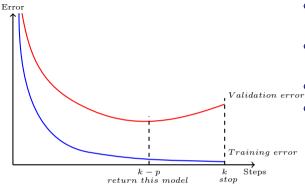
• Very effective and the mostly widely used form of regularization



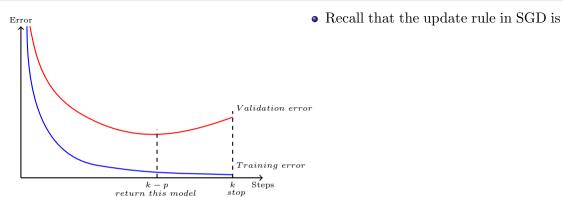
- Very effective and the mostly widely used form of regularization
- Can be used even with other regularizers (such as l_2)



- Very effective and the mostly widely used form of regularization
- Can be used even with other regularizers (such as l_2)
- How does it act as a regularizer?



- Very effective and the mostly widely used form of regularization
- Can be used even with other regularizers (such as l_2)
- How does it act as a regularizer?
- We will first see an intuitive explanation and then a mathematical analysis



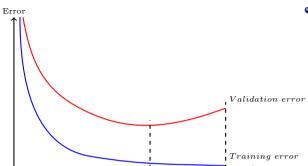
k-preturn this model

• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$

Training error

 $k \atop stop$ Steps



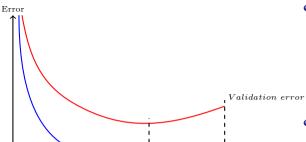
k - p

return this model

• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$
$$= w_0 - \eta \sum_{i=1}^t \nabla w_i$$

k Steps stop



k - p

return this model

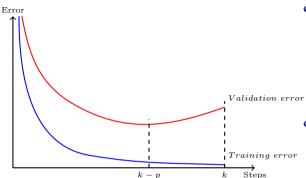
• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$
$$= w_0 - \eta \sum_{i=1}^t \nabla w_i$$

• Let au be the maximum value of ∇w_i then

Steps

stop



return this model

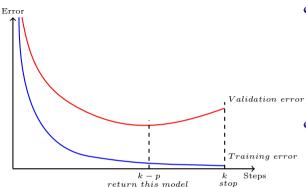
• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$
$$= w_0 - \eta \sum_{i=1}^t \nabla w_i$$

• Let τ be the maximum value of ∇w_i then

$$|w_{t+1} - w_0| \le \eta t |\tau|$$

stop



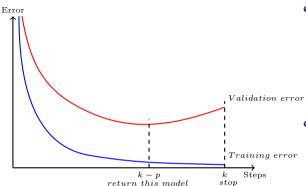
• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$
$$= w_0 - \eta \sum_{i=1}^t \nabla w_i$$

• Let τ be the maximum value of ∇w_i then

$$|w_{t+1} - w_0| \le \eta t |\tau|$$

• Thus, t controls how far w_t can go from the initial w_0



• Recall that the update rule in SGD is

$$w_{t+1} = w_t - \eta \nabla w_t$$
$$= w_0 - \eta \sum_{i=1}^t \nabla w_i$$

• Let τ be the maximum value of ∇w_i then

$$|w_{t+1} - w_0| \le \eta t |\tau|$$

- Thus, t controls how far w_t can go from the initial w_0
- In other words it controls the space of exploration

We will now see a mathematical analysis of this

$$\mathscr{L}(w) = \mathscr{L}(w^*) + (w - w^*)^T \nabla \mathscr{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2} (w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2} (w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\nabla (\mathcal{L}(w)) = H(w - w^*)$$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\nabla (\mathcal{L}(w)) = H(w - w^*)$$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\nabla (\mathcal{L}(w)) = H(w - w^*)$$

$$w_t = w_{t-1} - \eta \nabla \mathcal{L}(w_{t-1})$$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\nabla (\mathcal{L}(w)) = H(w - w^*)$$

$$w_{t} = w_{t-1} - \eta \nabla \mathcal{L}(w_{t-1})$$

= $w_{t-1} - \eta H(w_{t-1} - w^{*})$

$$\mathcal{L}(w) = \mathcal{L}(w^*) + (w - w^*)^T \nabla \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

$$= \mathcal{L}(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) \qquad [w^* \text{ is optimal so } \nabla \mathcal{L}(w^*) \text{ is } 0]$$

$$\nabla (\mathcal{L}(w)) = H(w - w^*)$$

$$w_{t} = w_{t-1} - \eta \nabla \mathcal{L}(w_{t-1})$$

= $w_{t-1} - \eta H(w_{t-1} - w^{*})$
= $(I - \eta H)w_{t-1} + \eta H w^{*}$

$$w_t = (I - \eta H)w_{t-1} + \eta H w^*$$

$$w_t = (I - \eta H)w_{t-1} + \eta H w^*$$

$$w_t = (I - \eta Q \Lambda Q^T) w_{t-1} + \eta Q \Lambda Q^T w^*$$

$$w_t = (I - \eta H)w_{t-1} + \eta H w^*$$

$$w_t = (I - \eta Q \Lambda Q^T) w_{t-1} + \eta Q \Lambda Q^T w^*$$

• If we start with $w_0 = 0$ then we can show that (See Appendix)

$$w_t = Q[I - (I - \varepsilon \Lambda)^t]Q^T w^*$$

$$w_t = (I - \eta H)w_{t-1} + \eta H w^*$$

$$w_t = (I - \eta Q \Lambda Q^T) w_{t-1} + \eta Q \Lambda Q^T w^*$$

• If we start with $w_0 = 0$ then we can show that (See Appendix)

$$w_t = Q[I - (I - \varepsilon \Lambda)^t]Q^T w^*$$

• Compare this with the expression we had for optimum \tilde{W} with L_2 regularization

$$\tilde{w} = Q[I - (\Lambda + \alpha I)^{-1}\alpha]Q^T w^*$$

$$w_t = (I - \eta H)w_{t-1} + \eta H w^*$$

$$w_t = (I - \eta Q \Lambda Q^T) w_{t-1} + \eta Q \Lambda Q^T w^*$$

• If we start with $w_0 = 0$ then we can show that (See Appendix)

$$w_t = Q[I - (I - \varepsilon \Lambda)^t]Q^T w^*$$

• Compare this with the expression we had for optimum \tilde{W} with L_2 regularization

$$\tilde{w} = Q[I - (\Lambda + \alpha I)^{-1}\alpha]Q^T w^*$$

• We observe that $w_t = \tilde{w}$, if we choose ε,t and α such that

$$(I - \varepsilon \Lambda)^t = (\Lambda + \alpha I)^{-1} \alpha$$

ullet Early stopping only allows t updates to the parameters.

- \bullet Early stopping only allows t updates to the parameters.
- If a parameter w corresponds to a dimension which is important for the loss $\mathcal{L}(\theta)$ then $\frac{\partial \mathcal{L}(\theta)}{\partial w}$ will be large

- \bullet Early stopping only allows t updates to the parameters.
- If a parameter w corresponds to a dimension which is important for the loss $\mathcal{L}(\theta)$ then $\frac{\partial \mathcal{L}(\theta)}{\partial w}$ will be large

- \bullet Early stopping only allows t updates to the parameters.
- If a parameter w corresponds to a dimension which is important for the loss $\mathcal{L}(\theta)$ then $\frac{\partial \mathcal{L}(\theta)}{\partial w}$ will be large
- However if a parameter is not important $(\frac{\partial \mathcal{L}(\theta)}{\partial w})$ is small) then its updates will be small and the parameter will not be able to grow large in 't' steps

- \bullet Early stopping only allows t updates to the parameters.
- If a parameter w corresponds to a dimension which is important for the loss $\mathcal{L}(\theta)$ then $\frac{\partial \mathcal{L}(\theta)}{\partial w}$ will be large
- However if a parameter is not important $(\frac{\partial \mathcal{L}(\theta)}{\partial w})$ is small) then its updates will be small and the parameter will not be able to grow large in 't' steps
- Early stopping will thus effectively shrink the parameters corresponding to less important directions (same as weight decay).