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Module 17.0: Recap of Probability Theory
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We will start with a quick recap of some basic concepts from probability
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Axioms of Probability

@ For any event A,
P(A)>0
o If Ay, A5 As,...., A, are disjoint

events (ie., A;NA; = ¢ Vi # j)
then

P(UA;) = ) P(Aj)

o If Q is the universal set containing all
events then

P(Q) =1
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Random Variable (intuition)

Suppose a student can get one of 3
possible grades in a course: A, B,C

One way of interpreting this is that
there are 3 possible events here

Another way of looking at this is
there is a random wvariable G which
each student to one of the 3 possible
values

And we are interested in P(G = g)
where g € {A, B,C}

Of course, both interpretations are
conceptually equivalent
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Random Variable (intuition)

e But the second one (using random

Grades variables) is more compact
N @ Specially, when there are multiple
q ° B attributes associated with a student
‘ G © (outcome) - grade, height, age, etc.
° ®
‘ ° ‘ ‘ e We could have one random variable
' meght corresponding to each attribute
! S;]Olrlt e And then ask for outcomes (or stu-
dents) where Grade = g, Height =
Age h, Age = a and so on
A Adult
Young|
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Random Variable (formal)

e A random variable is a function

Grades which maps each outcome in €2 to a
value
A
5 . B e In the previous example, G (or fgmde)
l ¢ c maps each student in 2 to a value: A,
° °
‘ i ' BorC
' Height @ The event Grade = A is a shorthand
H  |Short for the event {w € Q: forage = A}
Tall
Age
A Adult
Young|
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Random Variable (continuous v/s

discrete)
Grades o A random variable can either take
. continuous  values (for example,
5 B weight, height)
°
l G c e Or discrete values (for example,
® ° ) .
' P ' grade, nationality)
' daaL e For this discussion we will mainly fo-
7 : cus on discrete random variables
200cm
‘Weight
A 120kg
45‘kg
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G PG
9)

A 0.1

B 0.2

C 0.7
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Marginal Distribution

e What do we mean by marginal dis-
tribution over a random variable 7

@ Consider our random variable G for
grades

e Specifying the marginal distribution
over G means specifying

P(G=g) VYge A B,C

o We denote this marginal distribution
compactly by P(G)
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G I P(G=g,I=1)
A High | 0.3

A Low 0.1

B High | 0.15

B Low 0.15

C High | 0.1

C Low 0.2

Joint Distribution
e Consider two random variable G (grade) and
I (intellegence € {High, Low})
@ The joint distribution over these two random

variables assigns probabilities to all events in-
volving these two random variables

P(G=g,I=1) VY(g,i)e{A,B,C} x{H,L}

@ We denote this joint distribution compactly
by P(G,I)
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P(GII = H)

0.6
0.3
0.1

P(GI =1L)

QW= QA= Q

0.3
0.4
0.3

Conditional Distribution
e Consider two random variable G (grade) and I (intel-
legence)

e Suppose we are given the value of I (say, I = H) then
the conditional distribution P(G|I) is defined as

P(G=g,1=H)

Vg € {A, B,C}

@ More compactly defined as

P(G|I) =

or P(G,I)= P(G|I) + P(I)
N——— N——

joint conditional marginal
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Joint Distribution (n random variables)

o The joint distribution of n random variables
assigns probabilities to all events involving the

P(X1, X3,

, Xn) n random variables,

@ In other words it assigns

P(X1 =21,Xo =29,...., X, = )

for all possible values that variable X; can take

> =1

o If each random variable X; can take two values
then the joint distribution will assign probab-
ilities to the 2™ possible events
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Joint Distribution (n random variables)

@ The joint distribution over two random vari-
ables X7 and X5 can be written as,

P(X1, X3,

Xn)  P(X1, X3) = P(Xa|X1)P(X1) = P(X1]X2)P(Xs)

o Similarly for n random variables
P(X1, X9, ..., Xp)

= P(Xa, ..., Xn|X1)P(X1)

= P(X3, ..., X,| X1, Xo)P(X2| X1)P(X1)

= P(X4, ., Xn| X1, Xo, X3) P(X3| X0, X1)
P(X5|X1)P(X1)

=P(X)) [[P(XilX{™")  (chain rule)
=2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



A B P(A=a,B=0)
High | High | 0.3
High | Low 0.25
Low High | 0.35
Low Low 0.1
A P(A=a)
High | 0.55

Low 0.45

B P(B=a)
High | 0.65

Low 0.35
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From Joint Distributions to Marginal
Distributions

@ Suppose we are given a joint distribtion over
two random variables A, B

@ The marginal distributions of A and B can be
computed as

P(A=a)=> P(A=a,B=D)
Vb

P(B=b)=)» P(A=a,B=b)
Ya

@ More compactly written as

P(A) =) P(A,B)
B
P(B)=> P(A,B)




A B P(A=a,B=0)
High | High | 0.3
High | Low 0.25
Low High | 0.35
Low Low 0.1
A P(A=a)
High | 0.55

Low 0.45

B P(B=a)
High | 0.65

Low 0.35
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What if there are n random variables ?

@ Suppose we are given a joint distribtion over
n random variables Xi, Xo, ..., X,

@ The marginal distributions over X; can be
computed as

P(Xl = 331)

= Z P(Xl :Sﬂl,XQ :l‘g,.‘.,Xn—fL'n)
Vx2,23,..,Tn
@ More compactly written as
P(X)= Y  P(X1,Xs,..Xy)
X2,X3,..,.Xn
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o Recall that by Chain Rule of
Probability

P(X,Y) = P(X)P(Y|X)

o However, if X and Y are in-
dependent, then

P(X,Y) = P(X)P(Y)

Conditional Independence

@ Two random variables X and Y are said to be
independent if

P(X|Y) = P(X)

@ We denote thisas X 1L Y

o In other words, knowing the value of Y does
not change our belief about X

o We would expect Grade to be dependent on
Intelligence but independent of Weight
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Okay, we are now ready to move on to Bayesian Networks or Directed Graphical
Models
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Module 17.1: Why are we interested in Joint
Distributions
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y o In many real world applications, we
@ have to deal with a large number of
x X, X. random variables

@ @ e For example, an oil company may be

interested in computing the probabil-

X4 X
ity of finding oil at a particular loca-

tion
Xe

e This may depend on various (ran-

dom) variables

P(Y, X1, X3, X3, X4, X5, Xe) @ The company is interested in knowing

the joint distribution
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But why joint distribution?

Y
@ o Aren’t we just interested in

X X X: P(Y|X1, Xo, ..., Xp)?

e Well, if we know the joint distribu-

X4 X
L tion, we can find answers to a bunch
Temperature Biodiversity . . .
of interesting questions
Xi

P(Y, X1, X2, X3, Xy, X5, X¢)

Let us see some such questions of in-
terest
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@ We can find the conditional distribution

Y P(Y,X1,...., X»n)

PY|Xy,...X,) = :
VX1, Xn) > xx, POV X1, Xn)
X Xo X
o We can find the marginal distribution,
@ P(Y)= Y P(Y, X1 Xp ... X,)

X1, X
@ We can find the conditional independencies,
P(Y, X1, X2, X3, X4, X5, X¢) P(Y,X1) = P(Y)P(X;)
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Module 17.2: How do we represent a joint distribution
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Y (yes/no) ° Lae;i sslzzturn to the case of n random
v

e For simplicity assume each of these
X1 (high/low) X, (high/low) X3 (deep/shallow) Vvariables can take binary values
(]

- To specify the joint distribution, we

X4 (high/low) X; (high/low) need to specify 2" — 1 values. Why

e not (2")?
Biodiversity

) o If we specify these 2™ — 1 values, we
X (high/low) have an explicit representation for the
joint distribution

P(Y, X1, X2, X3, X4, X5, X¢)
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X X0 X3 Xy X, P Challenges with explicit
0 0 0 0 0 0.01 representation
1 0 0 0 0 0.03 e Computational: Expensive to ma-
0 1 0 0 0 0.05 nipulate and too large to to store
1 1 0 0 0 0.1 . ] ]
e Cognitive: Impossible to acquire so
many numbers from a human
e Statistical: Need huge amounts of
1 1 1 LI 1 0002 data to learn the parameters

(Once the first 2" — 1 values are specified
the last value is deterministic as the
values need to sum to 1)
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Module 17.3: Can we represent the joint distribution
more compactly?
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7 S P(I,S) e Consider the case of two random vari-
0 0 0.665 ables, Intelligence (I) and SAT Scores
0 1 0.035 (5)
1 (1) 8(2)2 o Assume that both are binary and take
values from High(1), Low(0)
o This distribution has (22 — 1 = 3)
parameters. e Here is one way of specifying the joint

o Alternatively, the table has 4 rows distribution

but the last row is deterministic

given the first 3 rows (or parameters) e Of course, there are many such joint

distributions possible
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1=0 |1=1
P(I) 0.7
no.of parameters=1
s=0 | s=1
P(S|I=0) | 095 0.05
P(S|II=1) |02 0.8

no.of parameters=2

e What! So from 3 parameters we have
gone to 6 parameters?

e Well, not really! (remember sum for
each row in the above table has to be

)

@ The number of parameters is still 3
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o Note that there is a natural ordering
in these two random variables

@ The SAT Score (S) presumably de-
pends upon the Intelligence (I). An
alternate and even more natural way
to represent the same distribution is

P(I,S) = P(I) x P(S|I)

o Instead of specifying the 4 entries in
P(I,S), we can specify 2 entries for
P(I) and 4 entries for P(S|I)
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i=0 i=1

P(I) 0.7 0.3
no.of parameters=1

s=0 s=1

P(S|I=0) | 095 0.05

P(S|II=1) |02 0.8

no.of parameters=2
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e What have we achieved so far?

@ We were not able to reduce the num-
ber of parameters

e But, we have a more natural way of
representing the distribution

@ This is known as conditional para-
meterization
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@ Now consider a third random variable

i Grade (G)
Intelligence

@ Notice that none of these 3 variables
are independent of each other

e Grade and SAT Score are clearly cor-

related with Intelligence

o Grade and SAT Score are also correl-
ated because we would expect

P(G=1|S=1)>P(G =15 =0)
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o However, it is possible that the dis-

Tntell tribution satisfies a conditional inde-
pendence
o If we know that I = H, then it is

possible that S = H does not give any

extra information for determining G

e In other words, if we know that the
student is intelligent we can make in-
ferences about his grade without even
knowing the SAT score

e Formally, we assume that (S L G|I)

o Note that this is just an assumption
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e We could argue that in many cases

. S LG|I
Intelligence

e For example, a student might be in-
telligent, but we also have to factor in

his/her ability to write in time bound

exams

@ In which case S and G are not in-
dependent given I (because the SAT
score tells us about the ability to
write time bound exams)

@ But, for this discussion, we will as-
sume S L G|I
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Question
o Now let’s see the implication of this assumption

o Does it simplify things in any way?
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1=0 |1=1
P(I) 0.7
no.of parameters=1
s=0 s=1
P(S|I=0) | 095 0.05
P(S|II=1) |02 0.8
no.of parameters=2
g=A | g=B | g=C
P(G—I=0) | 0.2 0.34 0.46
P(G—I=1) | 0.74 0.17 0.09

no.of parameters=4

total no.of parameters=7
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o How many parameters do we need to

specify P(I,G,S)?

(2x2x3—1=11)

e What if we use conditional paramet-
erization by following the chain rule?

P(I,G,S) = P(S,G|I)P(I)
= P(S|G,I)P(G|I)P(I)
= P(S|I)P(G|T)P(I)

since (S L G|I)
@ We need the following distributions to
fully specify the joint distribution
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1=0 |i1=1
P(I) 0.7
no.of parameters=1
s=0 s=1
P(S|I=0) | 095 0.05
P(S|II=1) |02 0.8
no.of parameters=2
g=A | g=B | g=C
P(G—I=0) | 0.2 0.34 0.46
P(G—I=1) | 0.74 0.17 0.09

no.of parameters=4

total no.of parameters=7
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o The alternate parameterization is
more natural than that of the joint
distribution

@ The alternate parameterization is
more compact than that of the joint
distribution

o The alternate parameterization is
more modular. (When we added G,
we could just reuse the tables for P(I)
and P(S|I))
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Module 17.4: Can we use a graph to represent a joint
distribution?
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@ Suppose we have n random variables,
all of which are independent given an-

other random variable C
@ The joint distribution factorizes as,
Xl X2 X3 o 'Xn P(C, X1,...,X,) = P(C)P(X1]0)
P(X2|X1,C)

@ This is called the Naive Bayes model P(X3| X2, X1,0)...

o It makes the Naive assumption that -
(9 pairs are independent given C =P(O) 1_11 P(XilC)
s

since X; L X;|C
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Intelligence Intelligence ("] Bayesian networks build on the intu-
itions that we developed for the Naive
Bayes model

o But they are not restricted to strong

Grade (naive) independence assumptions
Crade SAT e We use graphs to represent the joint
distribution
@ o Nodes: Random Variables
o Edges: Indicate dependence
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Difficulty Intelligence o Let’s revisit the student example

e We will introduce a few more random
variables and independence assump-
tions

@ The grade now depends on student’s
Intelligence & exam’s Difficulty level

@ The SAT score depends on Intelli-
gence

Letter
@ The recommendation Letter from the

course instructor depends on the
Grade
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Difficulty Intelligence o The Bayesian network contains a
node for each random variable

@ The edges denote the dependencies
between the random variables

e Each variable depends directly on its
parents in the network

Letter
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Difficulty Intelligence o The Bayesian network can be viewed
as a data structure

o It provides a skeleton for represent-
ing a joint distribution compactly by
factorization

@ Let us see what this means

Letter
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e FEach node is associated with a local
probability model

Difficulty

e Local, because it represents the de-
Intelligence pendencies of each variable on its par-

ents
@ There are 5 such local probability
.7 SAT models associated with the graph
i ,d
T e Each variable (in general) is associ-
i st . .. e
- . 05 ated with a conditional probability
Cetter it [o2 ] os distribution (conditional on its par-
ents)
lD ll
gt 0.1 0.9
g2 0.4 0.6
g% | 0.99 | o.01
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@ The graph gives us a natural factor-
ization for the joint distribution

-
o In this case,

Difficulty

P(I,D,G,S,L) = P(I)P(D)
P(G|I,D)P(S|I)P(L|G)

0.0 @ SAT o For example,
m
B ! P(I=1,D=0,G=B,S=1,L=0)

=0.3x0.6 x0.08x0.8x0.4

il 0.2 0.8
Letter

e The graph structure (nodes, edges)

0 1
s I along with the conditional probabil-
Zi e ity distribution is called a Bayesian
Network
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Module 17.5: Different types of reasoning in a Bayesian
network
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New Notations
o We will denote P(I = 0) by P(i°)

o In general, we will denote P(I =0,D =1,G=B,S=1,L =0) by
P(i07dlagb7$17l0)
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Causal Reasoning

o Here, we try to predict downstream
effects of various factors

Difficulty @ Let us consider an example

Intelligence e What is the probability that a stu-
dent will get a good recommendation
letter, P(I1)?

?&1): > > Y PUDGSTY

- s st 1¢(0,1) De(0,1) Se(0,1) Ge(A,B,C)
i 0.05
il 0.2 0.8
Letter
10 it
gt 0.1 0.9
g2 0.4 0.6
g% | 0.99 | 0.01
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=> > > > PUDGS]I

1¢(0,1) De(0,1) Se(0,1) Ge(A,B,C)

= Y PI) Y PDI) > PS|I,D) Y PG D,S).PI'G,I,D,S)

1¢(0,1) De(0,1) Se(0,1) Ge(A,B,C)
= Y P(I) > PMD) > PSII) Y PG|I,D).PIG)
Ie(0,1) De(0,1) Se(0,1) Ge(A,B,C)
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Z I) Y P(D) Y P(S|I) Y PGILD)PIIG)

De(O 1) Se(0,1) Ge(A,B,C)
Z 1) Y P(D) Y P(SID0(P(¢'|I,D))+0.6(P(¢°|I, D))+ 0.01(P(¢°|I, D))
€(0,1 De(O 1) Se(0,1)

o Similarly using the other tables, we can evaluate this equation

P(1") = 0.502
e 0 0 T gl 92 g3
: : 4% 03] 04 | 03
1 1 . ) . . .
@ e o 8 1 8 2 04" 10.05] 025 0.7
93 0 59 0 61 it,d’ | 0.9 |0.08 ] 0.02
= ' iTdl [ 05 | 03 | 0.2
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Causal Reasoning

o Now what if we start adding inform-
ation about the factors that could in-
fluence !

Difficulty

@ What if someone reveals that the stu-
dent is not intelligent?

o Intelligence will affect the score and
hence the grade

il 0.2 0.8
Letter

10 it
gl 0.1 0.9
g° 0.4 0.6
g% | 0.99 | 0.01
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>

P(i°,D,G,S,1")

De{0,1} S€{0,1} GE{A,B,C}

1.0
(7)7) = P(i0)
(144 =
De{0,1}
= Y P(D)
De{0,1}
P(1'i%) = 0.389

Se{0,1}

S P D P D

Ge{A,B,C}

PR ACIOEEDS

Se{o,1}

P(G|D,i")P(I'|G)

0.9P(g"|D,i") + 0.6 P(¢°| D,i°) + 0.01P(4°| D, °)

Ge{A,B,C}
10 It
gt ] 01| 09
g’ 04 | 06
g3 1 0.99 | 0.01
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g 13| 4
%d° | 03 | 04 | 0.3
i%d' [ 0.05]025] 0.7
it d | 0.9 | 0.08 | 0.02
itd" | 05 | 0.3 ] 0.2
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Causal Reasoning

e What if the course was easy?

@ A not so intelligent student may still
be able to get a good grade and hence
a good letter

Pli%,d = > > P@.d.GS1

Difficulty

Intelligence

pr SAT Ge(A,B,C) Se(0,1)
i0,dT
;1,3(1’ - P(1%i% d") = 0.513 (increases)
v, . g s
i 0.05
il 0.2 0.8
Letter
10 it
gl 0.1 0.9
g° 0.4 0.6
g% | 0.99 | 0.01
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Difficulty

@ i 0.2 0.8
Letter
10 it
gl 0.1 0.9
g° 0.4 0.6
g% | 0.99 | 0.01

Evidential Reasoning

o Here, we reason about causes by look-
ing at their effects

e What is the probability of the student
being intelligent?

e What is the probability of the course
being difficult?

o Now let us see what happens if we
observe some effects

P(it) =7
P(i')=0.3
P(d") =?
P(d)

Mitesh M. Khapr
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P(i')=0.3
P(d') =04

E Evidential Reasoning
P(i'|g®) = 0.079(drops)

(

(

@ What if someone tells us that the stu-

dent secured C grade?

1,3y _ -
P(d’]g”) = 0.629(increases) e What if instead of getting to know

P(i'|I°) = 0.14(drops) the grade, we get to know that the
P(IM1°, ¢%) = 0.079 student got a poor recommendation
(same as P(i'|g)) letter?

Difficulty  Intelligence e What if we know about the grade as

well as the recommendation letter?

e The last case is interesting! (We will
return to it later)

Letter
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P(i) = 0.3 Explaining Away

1) 3\
P(i*|g®) = 0.079(drops) o Here, we see how different causes of
P(illgg, dl) = 0.11(improves) the same effect can interact
e We already saw how knowing the
Difficulty Intelligence grade influences our estimate of in-
0 telligence
e What if we were told the course was
e e difficult?
Grade
@ Our belief in the student’s intelligence
SAT improves

Letter e

Why? Let us see
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P(i')y=0.3
P(i'|g®) = 0.079
P(it|g3,d") = 0.11
P(it|g?) = 0.175
P(it|g%,d') = 0.34

Difficulty  Intelligence

Letter
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Explaining Away

o Knowing that the course was difficult
explains away the bad grade

@ “Oh! Maybe the course was just too
difficult and the student might have
received a bad grade despite being in-
telligent!”

e The explaining away effect could be
even more dramatic

@ Let us consider the case when the
grade was B
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P(d') =0.40

P(d1|93) = 0.629 @ Suppose we know that the student
P(d'|s', g*%) = 0.76 had a high SAT Score, what happens
Difficulty  Intelligence to our belief about the difficulty of
the course?

Explaining Away

o Knowing that the SAT score was high

tells us that the student seems intel-
Grade e e ligent and perhaps the reason why he
scored a poor grade is that the course
was difficult

Letter
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Module 17.6: Independencies encoded by a Bayesian
network (Case 1: Node and its parents)
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Why do we care about independencies encoded in a Bayesian network?

o We saw that if two variables are independent then the chain rule gets
simplified, resulting in simpler factors which in turn reduces the number of
parameters.

o In the extreme case, we say that in the Bayesian network model, each factor
was very simple (just P(X;|Y) and as a result each factor just added 3
parameters

@ The more the number of independencies, the fewer the parameters and the
lesser is the inference time

e For example, if we want to the compute the marginal P(S) then we just need
to sum over the values of I and not on any other variables

o Hence we are interested in finding the independencies encoded in a Bayesian
network
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In general, given n random variables, we are interested in knowing if
(] Xz 1 Xj
o Xl 1 Xj’Z, where Z - Xl,XQ, ,Xn/Xz,XJ

o Let us answer some of the questions for our student Bayesian Network
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e o To understand this let us return to
our student example

o First, let us see some independen-

e cies which clearly do not exist in the
graph
e Is L 1 G? (No, by construction)
e Is G L D? (No, by construction)
e e Is G L I? (No, by construction)

e Is S L I? (No, by construction)

e Rule?

@ Rule: A node is not independent of
its parents
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@ Let us focus on G and L.

e o We already know that G [ L.

e What if we know the value of I?7 Does
e G become independent of L?

e No (intuitively, the student may be
intelligent or not but ultimately, the
letter depends on the performance in

e the course.)

o If we know the value of D, does G

become independent of L.
@ No, the instructor is not going to look

e No (intuitively, the course may be
at the SAT score but the grade

easy or hard but the letter would

e Rule? depend on the performance in the
@ Rule: A node is not independent of course)
its parents even when we are given e What if we know the value of S? Does
the values of other variables G become independent of L?
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e o The same argument can be made
about the following pairs

e G [ D (even when other variables are

e given)
e G [ I (even when other variables are

given)
e S [ I (even when other variables are

e given)

e Rule?

@ Rule: A node is not independent of
its parents even when we are given
the values of other variables
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Module 17.7: Independencies encoded by a Bayesian
network (Case 2: Node and its non-parents)
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e @ Now let’s look at the relation between
a node and its non-parent nodes

o IsL L S7
e @ No, knowing the SAT score tells us
about I which in turn tells us some-
thing about G and hence L
e o Hence we expect P(I'[s!) > P(I}|sY)
o Similarly we can argue L. Y D and
LYI
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e o But what if we know the value of G7
o Is (L L 9)|G?
@ Yes, the grade completely determines
e the recommendation letter

@ Once we know the grade, other vari-
ables do not add any information

e e Hence (L L 9)|G

e Similarly we can argue (L L I)|G and
(L L D)|G
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e e But, wait a minute!
@ The instructor may also want to look

at the SAT score in addition to the

e grade
o Well, that the

we “assumed” in-
structor only relies on the grade.
o That was our “belief” of how the
e world works

@ And hence we drew the network ac-
cordingly
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o Of course we are free to change our
assumptions

e We may want to assume that the in-

e e structor also looks at the SAT score

e But if that is the case we have to
change the network to reflect this de-
Q e e pendence
e Why just SAT score? The instructor
may even consult one of his colleagues
e and seek his/her opinion
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o Remember: The graph is a reflec-
tion of our assumptions about how
the world works

e e @ Our assumptions about dependencies

are encoded in the graph

e e e e Once we build the graph we freeze it
and do all the reasoning and analysis
(independence) on this graph

e o It is not fair to ask “what if” ques-
tions involving other factors
(For example, what if the professor
was in a bad mood?)
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e If we believe Graph (a) is how the

e e world works then (L L S)|G
o If we believe Graph(b) is how the

e e e world works then (L [ S)|G

Q e We will stick to Graph(a) for the

discussion

(a) (b)
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@ Let’s return back to our discussion of finding independence relations in the
graph

@ So far we have seen three cases as summarized in the next module
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Module 17.8: Independencies encoded by a Bayesian
network (Case 3: Node and its descendants)
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o (GLD)(GLI)(SLD (LLG)
A node is not independent of its par-
ents

e e o (G LD,I)S,L
(S L I)|D,G,L
(L LG)|D,I,S
A node is not independent of its par-
e @ ents even when other variables are
given
o (SLG)I?
e (L L D,I,S)|G?
(G L L)D,I1?

A node seems to be independent of
other variables given its parents
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o Let us inspect this last rule

o Is (G L L)D,I?

e e o If you know that d = 0 and ¢ = 1 then

you would expect the student to get
a good grade

e @ e But now if someone tells you that the

student got a poor letter, your belief

e will change

e So (Gt L)|D,I

@ The effect (letter) actually gives us in-
formation about the cause (grade)
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o (GLD)(GLI)(SLID(LLG)
A node is not independent of its par-
ents

o (G L D,I)SL
e e (S L1)|D,G,L
(L LG)D,I,S

A node is not independent of its par-

ents even when other variables are
& given
o (SLG)II
e (L LD,INS)|G
(G £ DD, T

Given its parents, a node is
independent  of all  variables
except its descendants
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Module 17.9: Bayesian Networks: Formal Semantics
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We are now ready to formally define the semantics of a Bayesian Network

Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent
random variables X7, Xo, ..., X,,. Let P(g(, denote the parents of X; in G and
NonDescendants(X;) denote the variables in the graph that are not descendants of
X;. Then G encodes the following set of conditional independence assumptions
called the local independencies and denoted by I;(G) for each variable Xj.

(X; L NonDescendants(X;) \Pg(l)
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e We will see some more formal definitions and then return to the question of
independencies. J
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Module 17.10: I Maps
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o Let P be a joint distribution over
X=X1,X,,...,.X,

o We define I(P) as the set of
e e independence assumptions that hold
in P.

e For Example:
e @ I(P)={(G LS|I,D),...}

o Each element of this set is of the
e form X; 1 X;|Z,Z C X|X;, X;

o Let I(G) be the set of independence
assumptions associated with a graph

G.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



We say that G is an I-map for P if
I(G) € I(P)

e (G does not mislead us about
e e independencies in P

e Any independence that G states

@ @ must hold in P

@ But P can have additional

e independencies.
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0
1
1

_ o = O

0.08
0.32
0.12
0.48

Mitesh M. Khapra

o Consider this joint distribution over
XY

@ We need to find a G which is an
I-map for this P

e How do we find such a G?
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o Well since there are only 2 variables
here the only possibilities are

0|0 008 I(P)={(X LY)}or I(P)=19
0|1 0.32

o ik e From the table we can easily check
1|1 0.48 P(X,Y) = P(X).P(Y)

o I(P) = {(X LY)}

e Now can you come up with a G
which satisfies I(G) C I(P)?
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@ Since we have only two variables
X v X there are only 3 possibilities for G

@ Which of these is an I-Map for P?

e Well all three are I-Maps for P

They all satisfy the condition
I(G) CI(P)

Y X Y

I(G)=2 I(Gy)=% I(Gs)={(XLY)}
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e Of course, this was just a toy
example

e In practice, we do not know P and
hence can’t compute I(P)

e We just make some assumptions
about I(P) and then construct a G
such that I(G) C I(P)
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@ So why do we care about I-Map?

o If G is an I-Map for a joint
distribution P then P factorizes over

@ @ 6

e What does that mean?

e @ e Well, it just means that P can be

written as a product of factors where
each factor is a c.p.d associated with
e the nodes of G

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



Theorem

Let G be a BN structure over a set of
random variables X and let P be a joint
distribution over these variables. If G is
an [-Map for P, then P factorizes
according to G

Proof:Exercise

Theorem

Let G be a BN structure over a set of
random variables X and let P be a joint
distribution over these variables. If P
factorizes according to G, then G is an
I-Map of P

Proof:Exercise

Mitesh M. Khapra
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@ Consider a set of random variables
Xl) X2a X37 X47 X5

@ There are many joint distributions
possible

e Each may entail different
independence relations

e For example, in some cases L could

@ Answer: A complete graph
P grap be independent of S; in some not.

@ The factorization entailed by the

above graph is e Can you think of a G which will be
P(X3)P(X5|X3)P(X1]|X3, X5) an I-Map for any distribution over
P(X2| X1, X3, X5)P(X4| X1, X2, X3, X5) P?

e which is just chain rule of probability
which holds for any distribution
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