# Accelerating Computation of Steiner Trees on GPUs

### Rajesh Pandian M CS16D003 www.cse.iitm.ac.in/~mrprajesh



# Acknowledgements

- Many thanks to my advisors N.S.Narayanaswamy & Rupesh Nasre.
- Thanks to P100 GPU Server and TCS+PACE Lab members.
- This work evolved after the PACE Challenge 2018 [www.pacechallenge.org] on Steiner Tree
- This work is published in IJPP 2022.

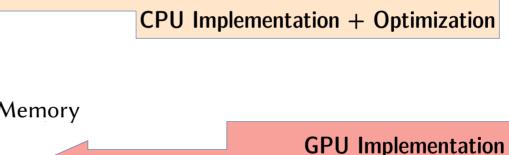


# Outline

- Introduction Steiner Tree Problem
- Definition & Example
- KMB algorithm
- Challenges in parallelizing KMB
- Design Choice of KMB
- CPU Optimization



- SSSP Optimization Sync, Compute, Memory
- Double Barrel and p-SSSP
- Experimental Results
- Summary



**Designing** &

Introduction & Algorithm

& Optimization



## Steiner Tree Problem (STP)

| <u>Input</u> | : Undirected Graph G(V, E, W, L) | W is non-negative edge weights; $L \subseteq V$ terminals |
|--------------|----------------------------------|-----------------------------------------------------------|
|--------------|----------------------------------|-----------------------------------------------------------|

- <u>Output</u> : A tree with all terminals
- **Goal** : Minimize the weight of the tree
- Steiner Tree tree with all the terminals and zero or more non-terminals.
- **Terminals or** terminal vertices are special vertices which must be present in the tree
- Non-terminals or Steiner vertices are optional vertices generally included in tree to minimize the overall weight of the resulting tree.
- Standard Graph-theoretic notation is used n=|V|, m=|E| and additionally k=|L|
- Applications[Hwang et. al. 92]: VLSI design, network/vehicle routing, etc.



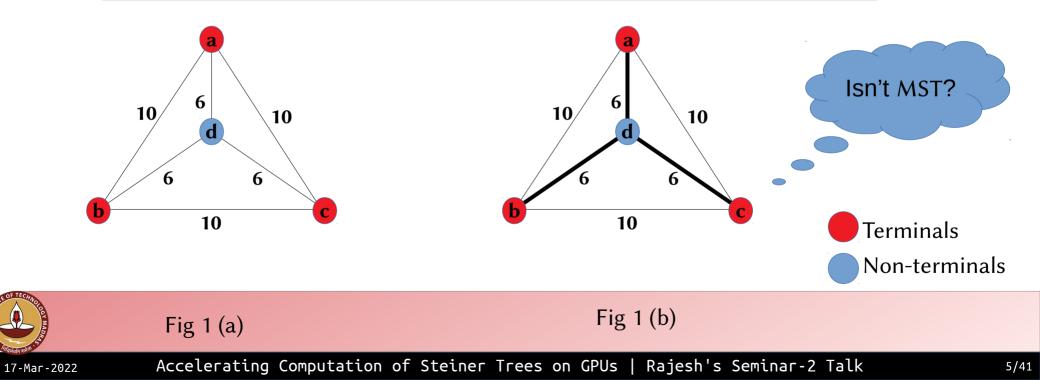
F.K. Hwang, D.S. Richards, P. Winter, *The Steiner Tree Problem*, Annals of Discrete Mathematics, Elsevier, 1992.

## Steiner Tree Problem (STP) – Example

<u>Input</u> : Graph G(V, E, W, L) W: $E \rightarrow Z^+$  and  $L \subseteq V$  terminals

<u>Output</u> : Connected subgraph  $T'(V' \supseteq L, E' \subseteq E)$  of G such that Min W(E')

// Minimum weighted tree with all terminals

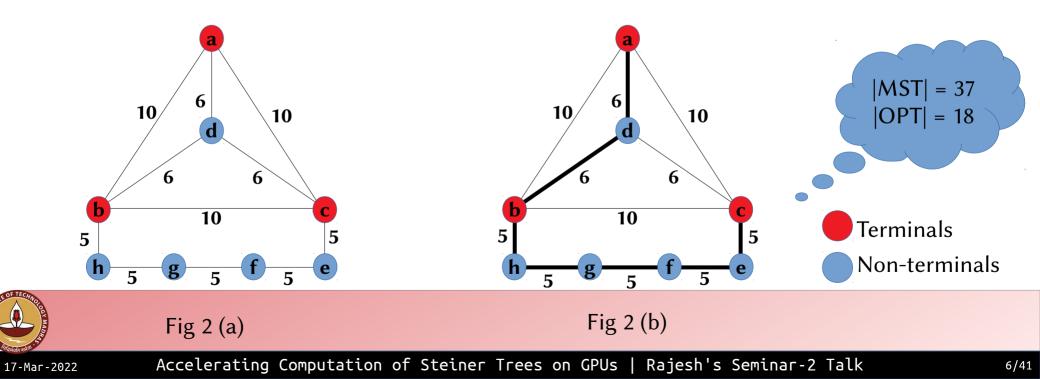


## Steiner Tree Problem (STP) – Example

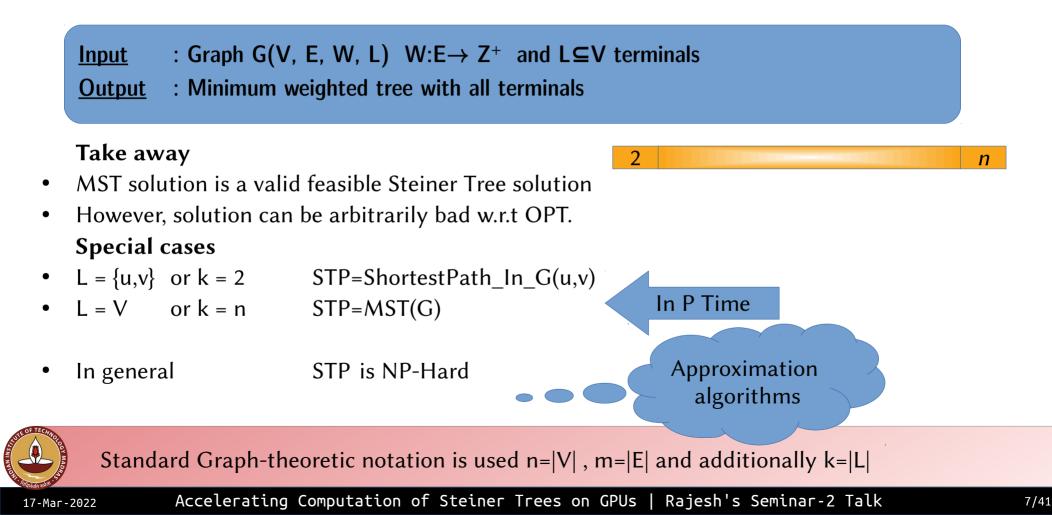
<u>Input</u> : Graph G(V, E, W, L) W: $E \rightarrow Z^+$  and  $L \subseteq V$  terminals

<u>Output</u> : Connected subgraph  $T'(V' \supseteq L, E' \subseteq E)$  of G such that Min W(E')

// Minimum weighted tree with all terminals



## Steiner Tree Problem (STP) - Hardness



# How to deal with NP-Hardness

- No Polynomial time algorithm can find optimal solution unless P = NP.
- What could be naive solutions? Enumerate all Spanning trees.

### **Approximation algorithm**

- Runs in Polynomial time.
- Outputs an approximate solution with some guarantee.
  - e.g 2 or some constant, log n, etc.
- There are several algorithms
  - Kou, Markowsky and Berman[KMB81]
  - Mehlhorn [M88]
  - Robins and Zelikovsky [RZ2000]



L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 1981.

## Comparison with related work

| Solver                          | CPU          | GPU     | k >128 | Quality                              | Time taken |
|---------------------------------|--------------|---------|--------|--------------------------------------|------------|
| PACE2018 Winner<br>[CIMAT Team] | ✓            |         | ✓      | **                                   | BBBBB      |
| OGDF's KMB<br>/JEA [BC19]       | $\checkmark$ |         | ✓      | $ \mathbf{x} \mathbf{x} \mathbf{x} $ | COC        |
| CUDA STAR<br>[MK15]             |              | ✓       |        | -                                    | -          |
| Our KMBCPU<br>[MNN22]           | $\checkmark$ |         | ✓      | $ \mathbf{x} \mathbf{x} \mathbf{x} $ | Ċ          |
| Our KMBGPU-OPT<br>[MNN22]       |              | ✓       | ✓      | $\star\star\star$                    | C          |
| <b>Table 1</b> Character        | r work.      | average |        |                                      |            |

17-Mar-2022

SAM NEL

# Challenges in parallelizing KMB

- Graph algorithms in general has an irregular access pattern.
  - Defies the scope of parallelizing
- Involvement of multiple primitive algorithms (such as SSSP and MST)
  - Dependence on an algorithm input from the output of previous algorithm
- Maintaining consistent parent information in SSSP along with distances.
  - Individual atomic instructions may not lead to atomic transactions.
- Parallel KMB may output different solutions during different invocations,
  - Makes it difficult to validate the solution,



## Our Contributions

- Optimized CPU implementation for KMB algorithm
  - Novel SSSP-halt technique
  - Speed-up upto 15x (average 4x) improvement over JEA/OGDF's KMB[BC19]
- Optimized GPU implementation for KMB algorithm
  - Novel p-SSSP technique (multiple parallel-SSSP in parallel)
  - Speed-up upto 27x (average 4x) over sequential CPU [MNN22]
  - Speed-up upto 62x (average 20x) over sequential JEA/OGDF's KMB [BC19]



S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

# KMB Algorithm G(V,E,W,L)

#### Phase 1

Computes the shortest distance between every pair of terminals

#### Phase 2

// Construct  $G' = K_L$ 

Build a graph G' over terminals, having edge-weights corresponding to the shortest distances computed in Phase 1

// Every edge in G' corresponds to a path in G

MST (G')

### Phase 3

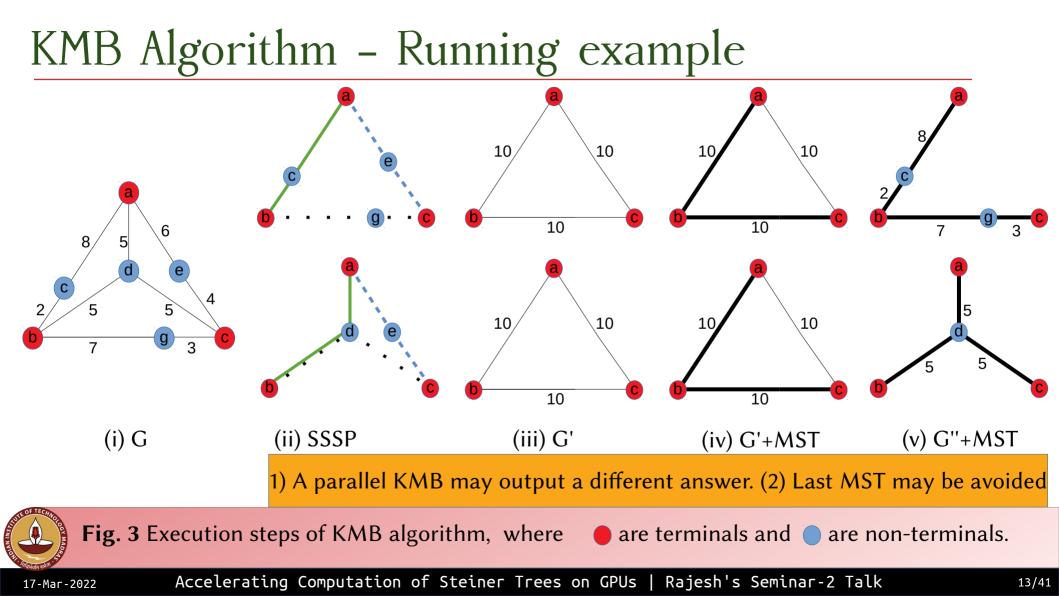
### // Construct G"

For every edge in MST(G') substitute the edges with the corresponding shortest path in G

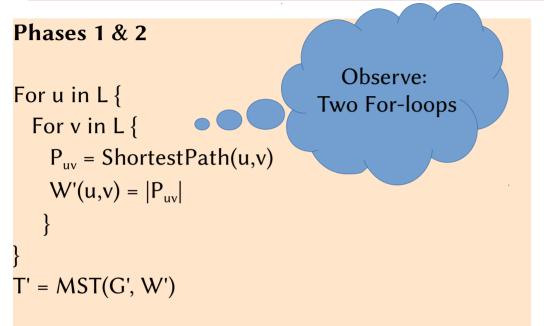
// Collect all the edges & vertices of the corresponding path to construct G''

MST(G'')





# KMB Algorithm G (V,E,W,L)



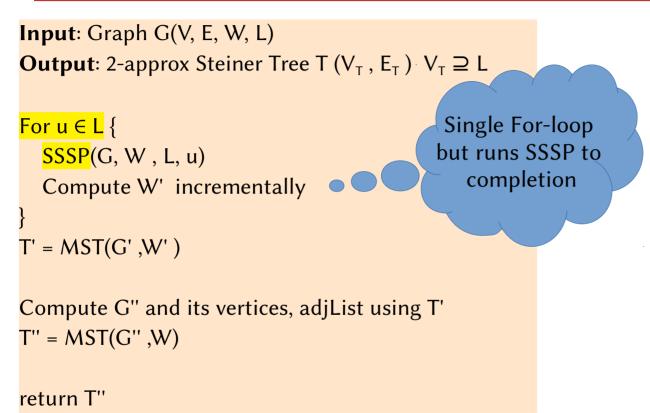
#### Phase 3

For (u,v) in edges of T' {  $G'' = G'' \cup P_{uv}$ //Add vertices & edges of  $P_{uv}$ 

 $\mathsf{T}'' = \mathsf{MST}(\mathsf{G}'', \mathsf{W})$ 



## KMB Algorithm G (V,E,W,L)





# KMB Algorithm G (V,E,W,L)

**Input**: Graph G(V, E, W, L) **Output**: 2-approx Steiner Tree T ( $V_T$ ,  $E_T$ )  $V_T \supseteq L$ 

```
For u ∈ L {

parallel SSSP(G, W , L, u);

Compute W' incrementally;
```

```
T' = <mark>parallel</mark> MST(G', W' );
```

Compute G'' and its vertices, adjList ; T'' = <mark>parallel</mark> MST(G'', W ); A novel aspect of our work is to run multiple parallel-SSSPs in parallel.

#### return T''



# SSSP : Dijkstra vs BellmanFordMoore

- Runs in time O((m+n) log n)
- Uses Fibonacci Min-Heap
- At each iteration,
  - Pick up node from Q
  - RELAXes all its neighbours

- Runs in time O(nm)
- No heap
- All edges are RELAXed at most (n-1) times

For i from 1 to n-1: For each edge (u, v) in E RELAX(u,v, W(u,v))

In parallel setting it is difficult use Queue

RELAX all edges Launched using n threads or m



# Dijkstra and its RELAX operations

INPUT: G(V,E,W), src OUTPUT: d[], p[]

```
INITIALIZE-SINGLE -SOURCE (G, src)
Q = G.V
while(! Q.empty() ) {
u = ExtractMin(Q);
For v in Adj[u]
RELAX(u,v, W)
```

Source : CLRS book

17-Mar-2022

RELAX(u, v, W){ If u.d + W(u,v) < v.d { v.d = u.d + W(u,v) v.p = u }

INITIALIZE-SINGLE -SOURCE(G , src) For each v in G.V {  $v.d = \infty$ v.p = NIL} src.d = 0

# **CPU** Implementation - Optimization

• SSSP-halt optimization

**Dijkstra Property**: when a node u is picked from Q for processing then the distance[u] is saturated using all the visited nodes.

Halt SSSP when all terminals are visited



Fig. 4 SSSP-halt visualization

17-Mar-2022

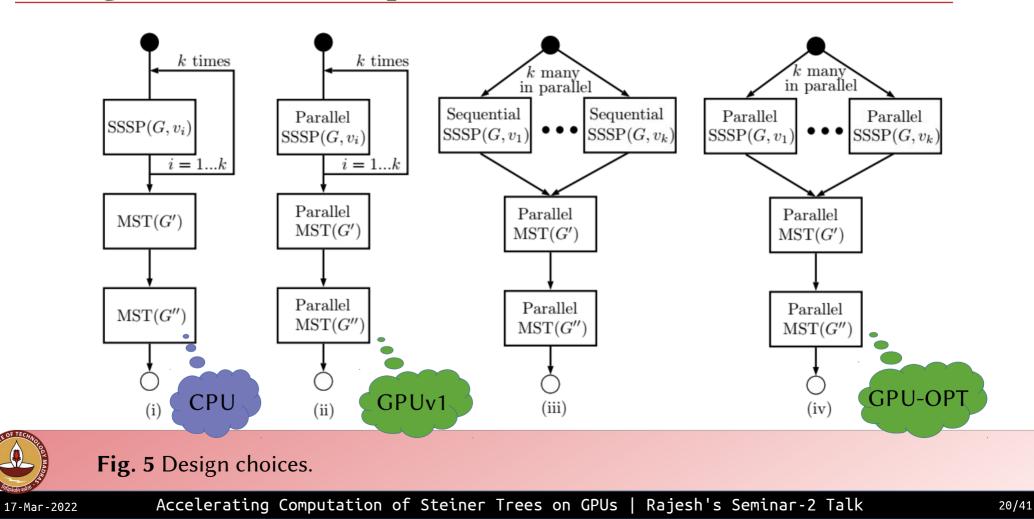
Steps

**SSSP** 

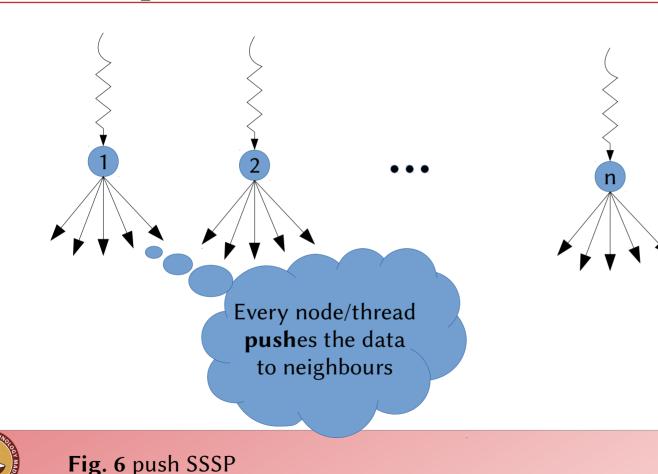
execution

of

## Design choice for parallelization



## GPU Implementation - SSSP



- n-threads
- One thread for each node
- Performs RELAX in parallel
- RELAXes its neighbours
- Till there is no change

KMB Algorithm G(V,E,W,L)

### MAIN

```
For s in L {
 ThdsPerBlk = 512; // or 1024
 Blks = [n/ThdsPer Blk];
 do {
    INIT-KERNEL<Blks,ThdsPerBlk>(s, d<sub>s</sub>, p<sub>s</sub>, n);
    SSSP-KERNEL<Blks,ThdsPerBlk>(.., s, d<sub>s</sub>, p<sub>s</sub>, changed, n);
                            // From Device to Host.
    CopyTo(DArray, d_s);
    CopyTo(PArray, p<sub>s</sub>); // From Device to Host.
    CopyTo(hChanged, changed); // From Device to Host.
 }while (hChanged);
```

- Note we reuse d[] p[] across iterations
- We need the p[] for knowing the intermediate vertices in the shortest path



# KMB Algorithm G(V,E,W,L)

### SSSP-KERNEL(...,s, d<sub>s</sub> , p<sub>s</sub> , changed, n) {

u = tid // compute tid;

### If tid < n $\{$

```
For v ∈ adjacent[u] { // Using CSR arrays
// Relax Operation (u, v, W(u,v))
```

```
newCost = d_s[u] + W(u, v);
old = d_s[v];
```

```
If newCost < old
Atomic-MIN(d<sub>s</sub>[v], newCost);
// Updates Parent array
```

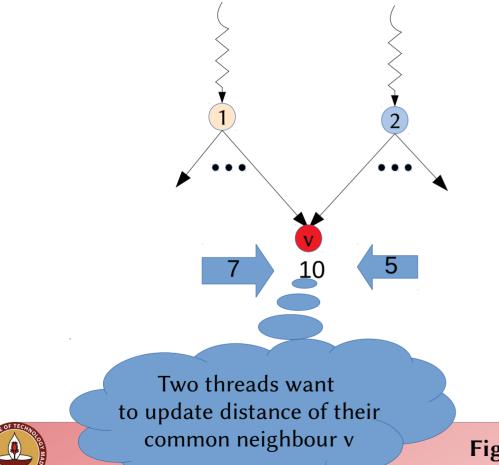
### Note :

• Parent of v should be updated if the Atomic-MIN is success



Is it enough?

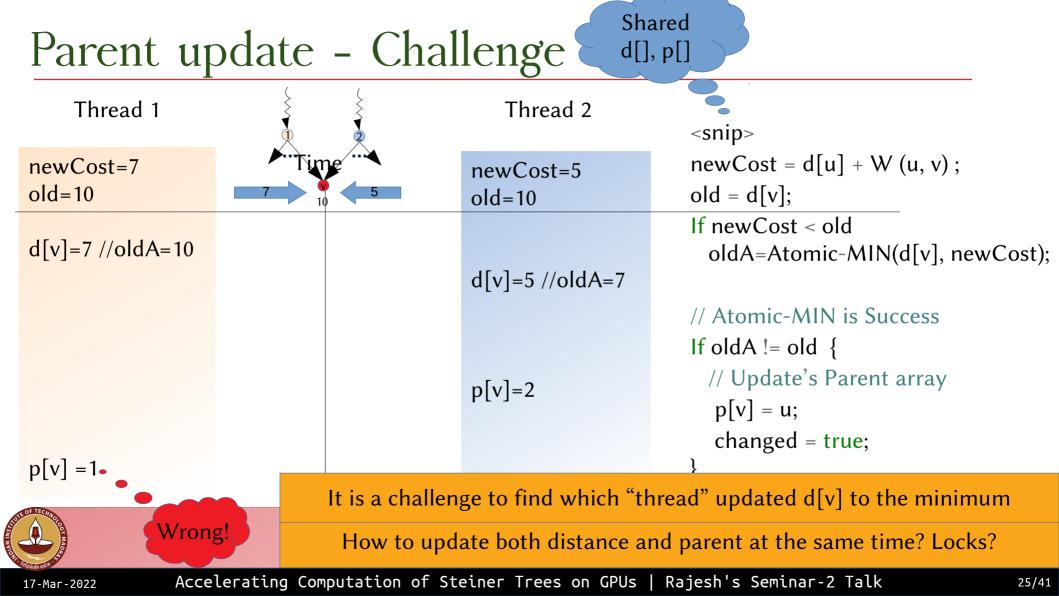
## Parent update - Challenge



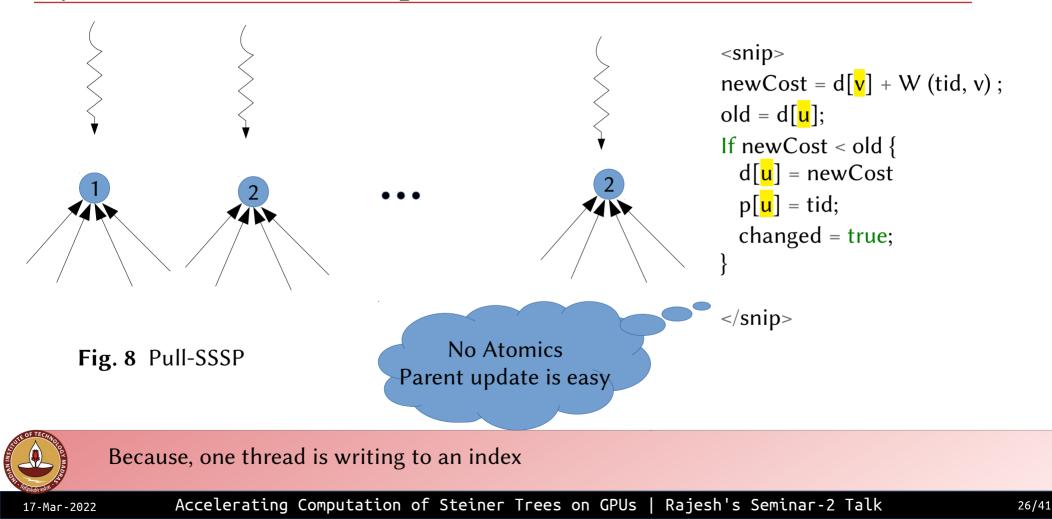
<snip> newCost =  $d_{s}[u] + W(u, v)$ ; old =  $d_s[v];$ If newCost < old Atomic-MIN(d [v], newCost); // Updates Parent array If Atomic-MIN is success {  $p_s[v] = u;$ changed = true; </snip>

Fig. 7 Challenges in parent update

17-Mar-2022



## Synchronization optimization • Pull



# GPU Optimizations

- Synchronization
  - Push
  - Pull
- Computation
  - Data-driven
  - Edge-based
  - Controlled Computation unrolling
    - Δ<sup>2</sup>
    - 2**Δ**
    - tΔ
- Memory
  - Shared memory



### $\Delta$ – max degree of the graph

# GPU Optimizations

- Synchronization
  - Push
  - <mark>Pull</mark>
- Computation
  - Data-driven
  - Edge-based
  - Controlled Computation unrolling
    - Δ<sup>2</sup>
    - 2**Δ**
    - <u>t</u>
- Memory
  - Shared memory

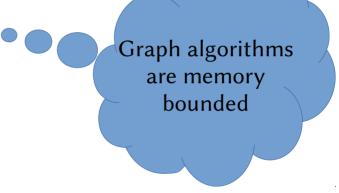




### $\Delta$ – max degree of the graph

## Compute optimization

- Computation Unrolling
  - Instead of one thread doing  $\Delta$  work, perform more work per thread
  - Update also neighbours of neighbours  $(\Delta^2)$
  - **<u>Repeat the work</u>**; Say 2 times or t times ( $2\Delta$  or t $\Delta$ ); e.g. we do pull 3 times in the kernel 3-pull
  - Empirically, we achieved best performance when t=3
- Data-driven
  - Needs Worklist (WL)
  - Active/Change nodes are inserted into WL
  - Only size of WL many threads launched
  - Need synchronization while inserting nodes in WL
- Edge based optimization
  - m-threads are launched
  - RELAXes one edge or a group of edges
  - Representation needs to be modified.

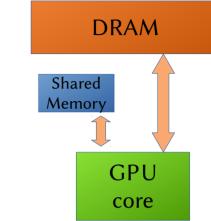




# Memory optimization

- Programmable shared memory can be useful
- When there are multiple reads to DRAM
- We can move data to shared memory
- For e.g. In 3-pull, we moved CSR AdjList to shared
- As the neighbours AdjList is accessed 3 times
- Of the total 48K per block
- when using 512 threadPerBlock we have 24 words to store per thread
- Hence, if degree(node) < 25 we use shared, we move CSR AdjList[node] to Shared
- With shared memory we achieve 25% of improvement in 3-pull





# Double-barrel approach

- SSSP happens in parallel
- To run two SSSP, we have to run one after the other
- Instead we use Double-barrel approach
- This can be generalized (p-SSSP)



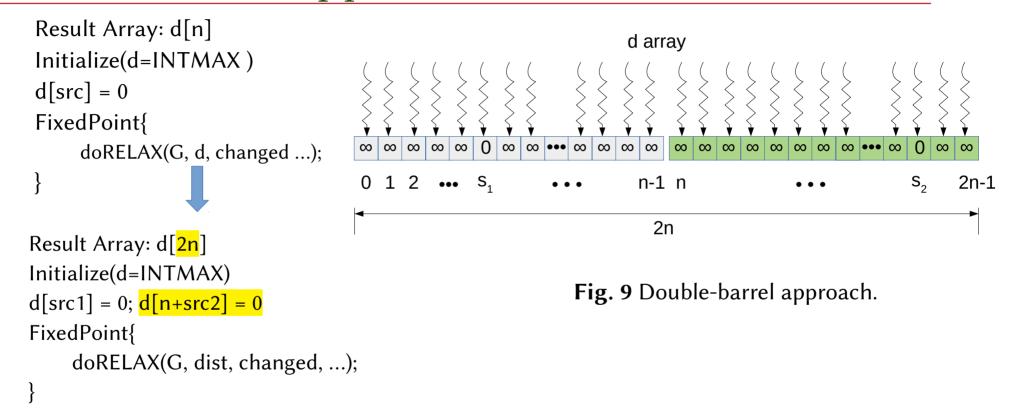
In our Double-barrel approach, we run two individually parallel SSSPs also in parallel.



Image source: https://stock.adobe.com/

17-Mar-2022

# Double-barrel approach





# Key takeaways so far

- Solving Steiner Tree Problem is NP-hard
- KMB Algorithm, a 2-approximation algorithm
- CPU implementation has SSSP-halt optimization
- SSSP with parent array update <u>was</u> challenging
- Pull-based SSSP is great for KMBGPU even without SSSP-halt
- Parallel-SSSPs in parallel (p-SSSP)



## Experimental setup & Graphsuite

### CPU

- Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz
- 64GB RAM

### GPU

- Tesla P100 @ 1.33 GHz
- 12GB global memory
- CentOS Linux release 7.5
- GCC 7.3.1 with O3
- CUDA 10.2

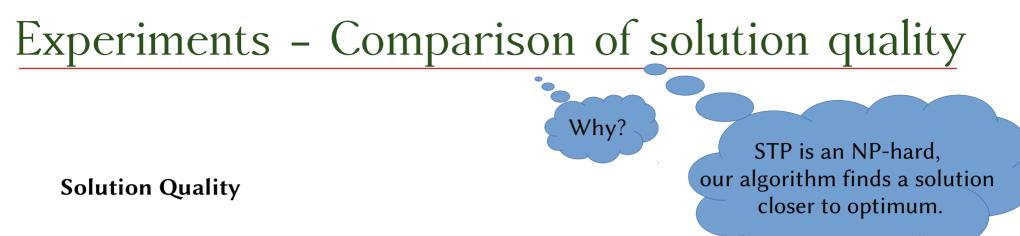
### Graphsuite

- Total 14 Graphs
  - 11 from PACE Challenge [PACE2018]
  - 2 from SteinLib
  - 1 from SNAP
- n : 17K 235K
- m:27K –498K
- k: 0.1K 6K

### Baselines

- PACE'18 Winner CIMAT [PACE2018]
- ODGF's KMB/JEA [BC19]
- PACE 2018 https://pacechallenge.org/2018/steiner-tree/
- CIMAT Team https://github.com/HeathcliffAC/SteinerTreeProblem
- S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

17-Mar-2022



- KMBGPU-OPT, KMBCPU and JEA are similar vs OPT
- KMBGPU-OPT and KMBCPU are better than PACE on all instances



- CIMAT Team https://github.com/HeathcliffAC/SteinerTreeProblem
- S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

17-Mar-2022

Experiments - Speed-up

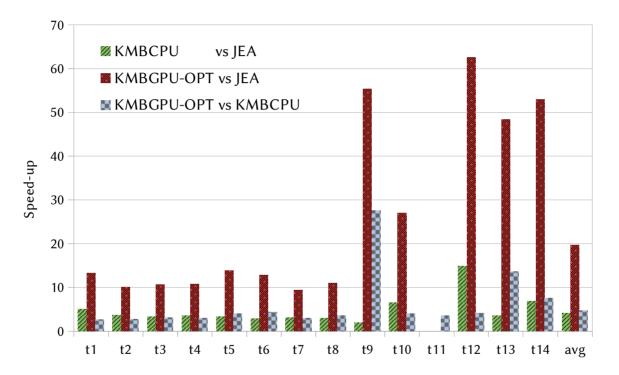
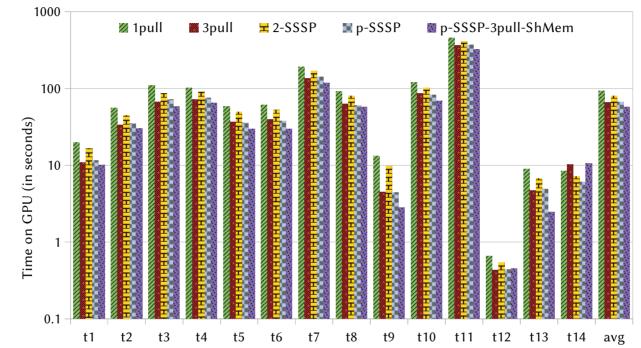


Fig. 10 Speed-up comparisons of the implementations (higher is better). JEA timed-out on t11

**Takeaway:** KMBCPU and KMBGPUOPT is better than JEA

17-Mar-2022

## Comparison of GPU time with Shared memory



**Fig. 11** Comparison of 1-Pull, 3-Pull, Double-barrel & p-SSSP+3-Pull+shared memory (smaller is better). Note: 1-Pull is KMBGPU whereas p-SSSP-3pull-ShMem is KMBGPU-OPT

**Takeaway:** Combining GPU optimizations p-SSSP, 3-Pull & Shared memory performs best.

17-Mar-2022

### Comparison of p-SSSP

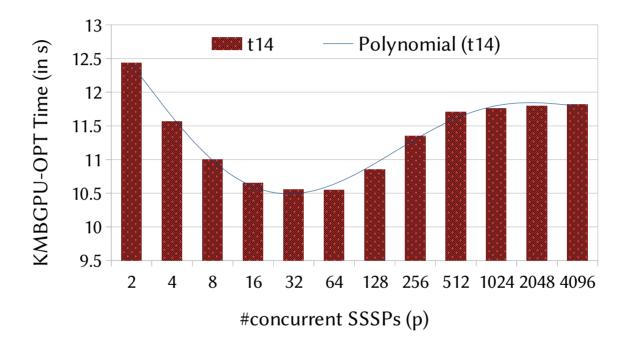


Fig. 12 KMBGPU with varying p-SSSP for the same graphs t14 (Smaller is better).



**Takeaway:** As we increase the #parallel SSSPs it reaches a point and then increases.

# Experiments - Scalability of GPU and CPU

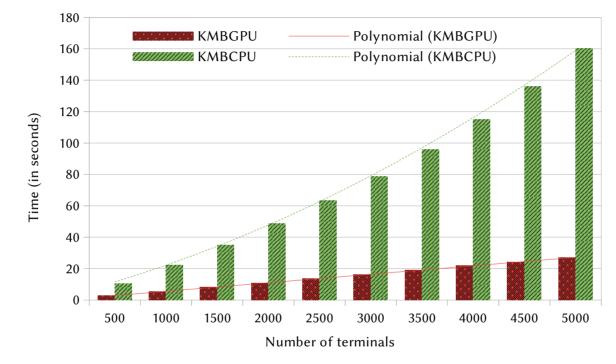
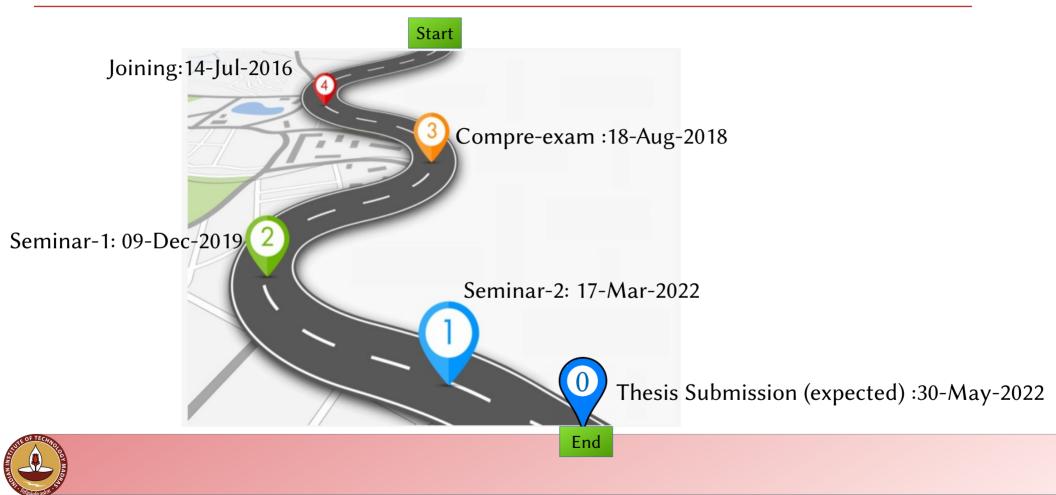


Fig. 13 Scalability plot on t14 with increasing terminal size (lower is better)



17-Mar-2022

### Timeline



# Summary

- SSSP halt-optimization benefits CPU.
- Pull and p-SSSP optimization benefits GPU.
- Our output Steiner tree can be used as initial tree for other local search algorithms.
- Our technique is applicable when multiple parallel instances of an operator are used.

### **Future work**

- KMBCPU can be extended to multicore-CPU.
- KMBGPU-OPT can be extended to multi-GPU.
- Capacitated Vehicle Routing Problem
- Build a GPU graph library for aiding NP-Hard problems.

