
Towards Measuring Quality of Service in Untrusted
Multi-Vendor Service Function Chains: Balancing

Security and Resource Consumption∗

Prasanna Karthik Vairam†, Gargi Mitra†, Vignesh Manoharan†, Chester Rebeiro†,
Byrav Ramamurthy‡, Kamakoti V†

†Indian Institute of Technology Madras, ‡University of Nebraska – Lincoln
{pkarthik, gargim, vigneshm, chester}@cse.iitm.ac.in, byrav@cse.unl.edu, kama@cse.iitm.ac.in

Abstract—The IT infrastructure of large organizations consists
of devices and software services purchased from multiple vendors.
The problem of measuring the quality of service (QoS) of
each of these vendor devices (and services) is challenging since
the vendors may tamper with the measurements for monetary
benefits or saving debugging efforts. Existing solutions for QoS
measurement in trusted environments cannot be extended for this
problem since the vendors can easily circumvent them. Solutions
borrowed from other areas such as client-server QoS measure-
ment do not help either since they incur unreasonable storage
and network overheads, or require extensive modifications to the
packet headers.

In this paper, we propose the Measuring Tape scheme, com-
prised of (1) a novel data structure called evidence Bloom filter
(e-BF) that can be deployed at the vendor devices (and services),
and (2) unique querying techniques, which can be used by the
administrator to query the e-BF to measure QoS. While e-
BF uses storage and computational resources judiciously, the
querying techniques ensure resilience to adversarial behavior. We
evaluate our solution based on a few real-world and synthetic
traces and with different adversaries. Our results highlight the
trade-off between resources (i.e., storage and computation) and
the accuracy of QoS predictions, as well as its implications
on security. We also present an analytical model of e-BF that
establishes the relationship between storage, prediction accuracy,
and security. Further, we present security arguments to illustrate
how our solution thwarts adversarial attempts to tamper QoS.

I. INTRODUCTION

Despite the availability of cloud computing platforms, many
large corporations and government organizations maintain
their own IT infrastructure, for security and privacy reasons.
These organizations procure hardware equipment, software
services, or a combination of both from several third-party
vendors. Although these IT infrastructures have a designated
network administrator, such a multi-vendor setup poses many
challenges related to management and maintenance of these
networked devices and software. Recent innovations in Soft-
ware Defined Networking (SDN) and Network Functions
Virtualization (NFV) have helped alleviate some of these
problems using Service Function Chains (SFC). The SFC
provides a unified interface from which the connected service
elements can be configured on a per-application basis. Figure 1
shows an ordered list of network service elements such as
firewall, intrusion detection system, and webserver forming
an SFC for web traffic [1].

∗A version of this paper has been accepted for publication at IEEE
Conference on Computer Communications (INFOCOM) 2019

Fig. 1: SFC for a web traffic application is shown. The left most
service element is owned by the administrator. The e-BF data-
structure is deployed at a service element to evaluate its QoS.

Measuring the Quality of Service (QoS) of each of these
service elements has always been a challenge due to the
computational and storage resources required. Based on inputs
from many banks in our country, we found that there is a
dearth of tools to measure the QoS of each vendor reliably
in a multi-vendor SFC setup, resulting in vendors blaming
each other during debugging. Consequently, this has led to the
absence of QoS clauses in Service Level Agreements (SLAs)
between the vendors and the organization. However, we argue
that the inclusion of QoS clauses in the SLA will improve
accountability. For example, web server vendors would guar-
antee a certain transaction (e.g., HTTP request) processing
rate, while firewall vendors may promise an expected accuracy
of filtering malicious transactions [2, 3].

Naı̈vely including QoS clauses in the SLA does not solve
this problem, but rather exacerbates it. For instance, to avoid
monetary loss [4] due to violations of the QoS clauses, vendors
may be tempted to hide failures that are either transient or take
very less time to fix, thereby reporting an inflated value of
their QoS [5, 6]. Vendors typically hide failures by configuring
their service element to lie that it saw a transaction which, in
reality, it did not, or that it did not see a transaction when it
actually did. Webservers would benefit from the former, while
firewalls could gain from the latter. Identifying SLA violations
is an important task. It not only has monetary implications
but can also affect the security and reliability of the entire
network [4, 5, 6]. Therefore, there is a need for a scheme that
can hold the vendors accountable if the QoS clause is violated.

Most prior works [7, 8] for QoS measurement in un-

trusted networks assume that the adversary is located be-
tween the sender and receiver. However, when the receiver
is also assumed to be untrusted, adapting solutions such as
SecureSketch [8] will require large storage at the service
elements. Similarly, other existing solutions [9, 10] will require
authentication headers to be included in every transaction. This
is not a good choice, since (1) it consumes payload space
that is otherwise available for carrying data; (2) it requires
payload space proportional to the number of hops in the
communication path; and, (3) it cannot be easily extended to
carry more authentication bits (say, 1024-bits) in case higher
security bounds are required.
Contributions: In this work, we propose a novel scheme
which can enable the administrator to reliably infer if a service
element received a transaction, even in untrusted settings,
where the service element could be lying. The central idea is
that, when queried for the status of a transaction, the service
element is required to not only answer that it received the
transaction but also provide evidence of it. This is unlike
Bloom filter [10, 11] or counter-based techniques [9], wherein
the service elements only answer if the transaction is received
but do not provide any evidence. To answer such queries, the
service element implements a data-structure to store the evi-
dence of transactions. Our solution requires the administrator
to be the first element in the SFC so that the administrator
can compute the query as well as the evidence it expects from
each service element for a particular transaction. This expected
evidence can be used to validate the evidence provided by the
service element. The proof that a service element received the
transaction is also the proof that the previous service element
in the SFC forwarded it.

In principle, hash tables can be used at the service elements
to store evidence. For every transaction received, the expected
query and the corresponding response (the evidence) for the
transaction are stored. However, the storage required for this
is considerable, making the scheme impractical. As an alterna-
tive, we propose a novel data-structure, called evidence Bloom
filter (e-BF), that can be deployed at the service elements to
store evidence of transactions more efficiently. The e-BF is
an array of cells, where each cell is of a certain number of
bits. Unlike hash tables, the query is not stored but instead
used as an index to an e-BF cell, which holds the evidence.
Each e-BF cell is an accumulator, which can store the ev-
idence corresponding to multiple transactions. This feature
permits evidence from a large number of transactions, to be
compressed in a small space. For instance, our experiments
indicate that a 4.47MB e-BF stores as much information as a
33.125MB hash table.

The use of e-BF as evidence storage gives rise to the
following research questions, which we address in this paper.
• Does the space savings in the e-BF result in inaccuracy of

stored evidences? Will the QoS evaluation framework be able
to handle this error margin?

• Is it possible for an adversarial service element to take
advantage of this error margin to forge evidences? If so,
how do we deal with it?

• Can an adversarial service element that did not receive
a transaction collude with another service element that
received it? Similarly, can it deny receiving a transaction?

• What is the accuracy of QoS predictions in adversarial
scenarios?

• Is it possible to implement a fool-proof scheme using off-
the-shelf hardware-software stacks available today?

The rest of the paper is organized as follows: We discuss
the literature related to our work in Section II. We describe
the proposed solution and the e-BF in Sections III and IV
respectively. The analytical model of e-BF, security arguments,
and evaluation are presented in Sections V, VI and VII respec-
tively. Finally, we present the conclusions in Section VIII.

II. RELATED WORK

Earliest works [12, 13, 14] for measuring QoS are designed
for generic networks and they assume the network nodes to
be honest. These solutions cannot be extended to untrusted
settings since an adversary can easily influence the measured
QoS [8, 9].

We compare our work with three solutions [8, 9, 10] that can
be used in an untrusted setting. SecureSketch [8] implements
a data-structure, called l2-norm, at the receiver to measure
QoS. Although SecureSketch was designed to thwart attempts
by adversaries located between a sender and a receiver, it
can also be extended to scenarios where the service element,
whose QoS is being measured, is dishonest. In such a case,
a per-user and per-flow l2-norm must be maintained at the
service element, requiring a large amount of storage. For
example, 150GB of storage is required at each SFC node
for a 10 Gbps link, as shown in subsequent works [10].
Further, the entire data-structure has to be transported back
to the source for quality estimation, resulting in impractical
overheads. Subsequently, Faultprints [10] and ShortMAC [9]
implement simpler sketching structures such as Bloom filters
and counters respectively at the network nodes to reduce the
storage requirements. However, both solutions employ authen-
ticator fields in the transaction headers to prevent dishonest
nodes from affecting the QoS computed at another node. A
major drawback of both schemes is that a dishonest node
can still influence its own QoS since it can easily forge its
counter values or the 1-bit Bloom filter responses. While
ShortMAC assumes that the majority of the network nodes
are honest (no forgery and no collusions), Faultprints requires
significant modifications to the transaction structure to deal
with this problem. Our solution, which uses e-BF, explores
the alternative approach of storing more expressive evidences
at the network nodes, thereby eliminating the need for authen-
tication fields in the headers that cannot be extended easily to
achieve higher security bounds. Also, e-BF has the following
advantages when compared to existing solutions [8, 9, 10]:
(1) it requires lesser storage space at each node, (2) it can
be shared across flows and users, (3) it does not require
transportation of the entire e-BF to the administrator for QoS
estimation, and (4) it is flexible, i.e., it can be reconfigured

Fig. 2: Operations performed to compute QoS.

every epoch for a particular storage commitment, security
bound, and QoS prediction accuracy.

III. PROPOSED SOLUTION

We consider an SFC of the form S1 → S2 . . . → Sr
where each service element Si (1 ≤ i ≤ r) can be owned
by a different vendor. One example is shown in Figure 1. A
dishonest service element may inflate its QoS to hide SLA
violations or faults. The objective of this work is to enable
the Administrator to evaluate the SLA compliance of each
service element in the SFC. Our solution requires a single
trusted service element S0 at the front of the SFC, denoted
as Administrator in Figure 1. The Administrator computes the
QoS of service elements based on the feedback (i.e., evidence
of transactions) it collects from them.

Each service element in the SFC implements a datastructure,
called the evidence Bloom filter (e-BF), which stores the
evidence of transactions received. Similarly, the Administrator
maintains a data-structure, called the Expected Evidence Store,
which stores the QoS query corresponding to each transaction
and its expected evidence. Figure 2 shows the timeline of
operations performed by the Administrator and a service
element. To check if a particular transaction was received by
a service element, the Administrator generates the QoS query.
The service element responds with the QoS response, which
is the evidence of receiving the transaction. This evidence is
retrieved from the e-BF maintained by the service element.
The Administrator validates the claim of the service element
by comparing the QoS response with the expected evidence.
The Administrator can only make such queries within a
predefined epoch, after which the service element may flush
the e-BF.

We now describe how the evidence and the query corre-
sponding to a transaction are computed at the ith service
element, Si. Every transaction leaves a unique fingerprint
at each service element it passes through based on which
unshareable evidences are computed, thereby enabling reliable
QoS measurement. This fingerprint Fi is a function of three
factors – (1) the constant parts of the transaction, which
uniquely identifies a transaction; (2) a secret key, Kadmin,i that
is shared between Si and the Administrator, which uniquely
identifies Si; and, (3) the fingerprints Fi−1, Fi−2, . . . F1 of the
previous service elements in the SFC. These three factors are

Fig. 3: Proposed solution. Figure shows the operations performed by
the Administrator and a service element.

also known to the Administrator, who is therefore capable of
computing the same fingerprint, and therefore, the same query
and response.
Assumptions. Our solution requires pairwise symmetric keys
to be established between the Administrator and each of the
service elements of the SFC. Prior theoretical works [15] prove
that the secret keys are a necessity for QoS measurement in an
untrusted setting and has been used in other works [8, 9, 10].
To avoid missing transactions which arrive at epoch bound-
aries, we use two e-BF data structures, which are populated
and flushed in alternative epochs [10]. The Administrator is
assumed to have sufficient storage for the Expected Evidence
Store, which could be larger than the e-BF. We also assume
that the QoS query and response are sent through multiple
paths whenever possible for reliability.
Adversary Model. We assume that the adversary is a service
element in the SFC. The adversary is capable of the following:
(1) guess the evidence for a transaction it did not receive; (2)
garble the evidence deliberately to disown responsibility for a
transaction it received; (3) compute evidence for a transaction
it did not receive by colluding with another service element in
the SFC; and, (4) frame another service element for a failure.
Attacks such as DoS and DDoS are out-of-scope of this work
and there are well-established solutions for handling the same.

A. Measuring Tape: Using e-BF for QoS

In this section, we describe the steps performed for QoS
measurement. Figure 3 expands on Figure 1 to highlight the
important operations.
Storing evidence in the e-BF at Si. We first describe how a
service element Si (i.e., IDPS) stores evidence of transactions
using the e-BF. The e-BF is an s-bit structure that can be
interpreted as n cells (or buckets) each of which is m-bits
long and initialized to zeros. The size of each cell (i.e., m)
decides the entropy (i.e., resilience to forgery) of the evidence.
For every transaction received, the service element Si performs
four steps: (1) fingerprint computation; (2) fingerprint bifurca-

tion; (3) evidence processing and storage; and, (4) transaction
post-processing.
⇒ Fingerprint Computation. When a transaction is received,
Si first computes the 256-bit fingerprint of the transaction
using a Hash-based Message Authentication Code (HMAC)
function with Kadmin,i as the key. The HMAC only operates
on the constant fields of the transaction and a special field
called the hash chain field. The value in the hash chain field
summarizes the fact that the transaction was forwarded by all
the previous service elements in the SFC (i.e., Admin →
S1 → . . . Si−1) in that order. More details on hash chain
computation will be revealed later in this section. The hash
chain ensures that the fingerprint of each service element is
different, thereby restricting service elements from colluding
(Refer Section VI for more details).
⇒ Fingerprint Bifurcation. In the next step, the fingerprint is
bifurcated into the transaction ID (TID) and the Raw Evidence.
The TID is used as an index to the e-BF, while the Raw
Evidence is processed and inserted into the indexed cell.
⇒ Storing in e-BF. The e-BF is designed so that maximum
number of evidences are stored per e-BF cell. The following
design choices help achieve this. (a) The evidence is inserted
into the e-BF cell using an accumulator function, which
merges the evidence with the evidences already present in
the cell. For example, if bitwise-or is used as the accu-
mulator function, every evidence computed is bitwise-or’ed
with contents of the corresponding e-BF cell; (b) we further
encode the evidence into a suitable format before storing
it;, and (c) we overlap e-BF cells so as to further increase
the usefulness of each cell. Section IV investigates several
accumulator functions, encoding techniques, and e-BF cell
overlap methods. Storing multiple evidences in a single cell
may affect the accuracy of each evidence stored in it. To
improve the accuracy, we store k copies of the evidence in
different cells. In such a case, TID would contain multiple
indices derived from the fingerprint. Figure 3 shows an e-BF
which stores two copies of evidence, i.e., redundancy factor
k = 2.
At a later point in time, when a service element receives a QoS
query, all redundant copies of the evidence will be retrieved
from the e-BF using the TID, the most accurate copy will be
identified, and sent as a QoS response.
⇒ Post Processing. Before forwarding the transaction to the
next service element, the value of the hash chain field, denoted
by HashChaini, is updated by Si as follows:

HashChaini = SHA2(HashChaini−1|Fi) , (1)

where SHA2 is a hash function and ‘|’ is the concatenation
operator. The value of HashChain0 is initialized by the
Administrator. �
Storing evidence in the Expected Evidence Store. The steps
performed by the Administrator for storing evidence is shown
in Figure 3. When a transaction is received, the Administrator
first fills the HashChain0 field with a random value and
computes the exact same fingerprint which the transaction
will leave at the service element, Si. Since the fingerprint at

Si depends on the hash chain value HashChaini−1 on the
transaction received, it is not straightforward to compute it.
The Administrator computes HashChaini−1 by recursively
computing HashChaini−2, . . . HashChain1, based on the
shared secret keys of Si−2, . . . S1 (refer Eq 1). The Admin-
istrator then follows the first three steps as a regular service
element to get the TID and the evidence. The entry stored in
the Expected Evidence Store is of the form {service element,
TID, expected evidence}. At a later point, the Administrator
can use entries from the table to evaluate Si. �

Validation Function. The QoS response provided by Si may
not match the expected evidence exactly if the e-BF cell
accumulated many evidences. The validation function at the
Administrator should be able to determine if the response con-
tains the expected evidence. Each accumulator function would
have its own validation function. For example, if bitwise-or
is used as an accumulator function, the validation function
can check if all the bits set in the expected evidence are also
set in the response. If more evidences accumulated in an e-
BF cell, it is likely that more number of bits of the response
will be set, and the usefulness of the response is reduced.
To quantify how close a QoS response is to the expected
evidence, we use a metric called usefulness, U . For a bitwise-
or accumulator, usefulness is computed as the percentage of
bits in the response (i.e., accumulated evidence) which are not
overwritten with 1. This metric represents the confidence of
the Administrator on the response provided by Si. �

QoS Computation. We now describe a novel strategy that
reliably calculates the QoS of Si by automatically neutralizing
attempts to inflate QoS. Let us assume that p responses are
collected from a service element for computing its QoS. Of
these, the ones that fail the validation test are denoted by
pfail. The number of evidences which pass the validation
test with a high value of usefulness are denoted by ppass.
The evidences which pass but have a low value of usefulness,
represented by pmargin, could arise due to one of the following
two cases. It may happen due to many evidences getting
accumulated in an e-BF cell or due to QoS inflation attempts
by a dishonest service element. For instance, a dishonest
service element could forge an evidence with all bits as 1s
which will definitely pass the bitwise-or validation test but
will have zero usefulness.

⇒ Phantom Queries. To quantify the extent of QoS inflation,
a number of imaginary queries, called phantom queries, are
sent to the service element. These phantom queries have
an imaginary TID and are indistinguishable from regular
queries. If a service element is honest, most of its responses
corresponding to the imaginary queries will fail the validation
test. However, if it is dishonest, it would send forged responses
(with many 1s) which will pass the validation test. The QoS
inflation of a dishonest service element is measured as the
extent to which it falsely claims having received such non-
existent imaginary transactions.

The aggregate QoS can be calculated after discounting

inflation as follows:

QoS =
ppass+(1−inflation)pmargin

ppass+pmargin+pfail
.�

IV. E-BF DESIGN CHOICES

In this section, we discuss how the parameters and functions
of the e-BF must be fixed by the Administrator.
Redundancy factor and accumulator function. The re-
dundancy factor k determines how many copies of evidence
must be stored per transaction. A very high value of k may
result in the e-BF getting filled faster, while a low value will
mean that the probability of finding a least corrupted copy of
the evidence is less. Similarly, deciding on the accumulator
function, which determines how the existing contents of an
e-BF cell are combined with new evidence, is critical. An
ideal accumulator should be (i) inclusive, i.e., ensure that the
evidence already in a cell is never lost, and (ii) commutative,
i.e., gives the same result irrespective of the order of arrival of
transactions. We explored the suitability of functions such as
bitwise-and, bitwise-or, bitwise-xor, and chained hashes to
serve as an accumulator. We note that bitwise-or is the most
suitable accumulator function since it is both inclusive and
commutative.
Encoding function. Hamming weight (i.e., the number of
1s in the binary representation) of evidences impacts the
usefulness of an e-BF cell. Therefore, we investigate encoding
techniques to reduce the Hamming weight, enabling more
number of evidences to be stored per e-BF cell. We discuss
three encoding functions. (1) The AND function extracts two
m bit strings from the Raw evidence and applies a bitwise-
and function to produce the evidence; (2) The COPY function
first extracts two m bit strings from the Raw evidence. Then,
it replaces two consecutive 1s from the first with the corre-
sponding bits of the second string to generate the evidence;
and, (3) NZ-x function which ensures that x is the maximum
percentage of 1s in the processed evidence. For instance, NZ-
50 has m/2 number of 1s in the worst case. Algorithm 1
shows the working of NZ-x. The idea is that NZ-50 chooses
θ = m/2 indices of the final evidence that must be set;
often resulting in a Hamming weight < θ. The while loop
sets exactly one bit of the final evidence every iteration (step
5) and runs for θ iterations. Figure 4 compares the encoding
functions relative to the Baseline (i.e., no encoding) based
on the percentage of good evidences (i.e., Hamming weight
< m/2), the percentage of unique evidences possible, and
the average Hamming weights. The bad evidences have a
significant impact on the performance of our scheme, due to
which we choose NZ-50 scheme, which always produces good
evidences. However, NZ-50 has a significantly less number of
unique representations and a slightly higher average Hamming
weight than other schemes.
E-BF cell overlap. Adjacent cells of the e-BF can be made
to overlap for compressing the evidences further. We denote
the number of bits that are shared between adjacent cells of
the e-BF by g. Figure 6 shows a few configurations of e-
BF by varying g. Contrary to conventional designs [16, 17],

which either use g = 0 or g = m − 1, we observed that
g = m/4 allows accumulating more evidences per e-BF cell.
We formally prove these observations in Section V.

V. OPTIMAL CONFIGURATION FOR THE E-BF

In this section, we formally determine the optimal configu-
ration of e-BF to achieve the maximum average usefulness U
and least false positive rate Pfp. For this, we first develop an
analytical model of the e-BF with cell size m, overlapping bits
g, redundancy k, and an encoding scheme with average Ham-
ming weight w. We then present an algorithm in Section V-A
that utilizes the analytical model to design the optimal e-BF.

Lemma V.1. For an e-BF with size s, bucket size m, and
bucket overlap g, the number of buckets n is given by,

n = ds/(m− g)e . (2)

Proof. The number of non-overlapping buckets that fit into a
s bit e-BF is s/m. When there is a g bit overlap between
buckets, a new bucket starts every m− g bits. �

Lemma V.2. The probability Psat,no of a non-overlapping bit
in the e-BF turning into 1 (i.e., saturating) after the insertion
of p packets is given by,

Psat,no = 1−
(
1− w

nm

)pk
. (3)

Proof. The chance of a bucket being selected for the insertion
of an evidence is 1/n. Also, the chance of a bit of the incoming
m-bit evidence being set is w/m. So, the chance of a bit
of a bucket getting set to 1 because of the insertion of this
evidence is 1

n×
w
m . Consequently, the chance of a bit not being

set after insertion of one evidence is (1− w
nm). Furthermore,

the chance of a bit not being set by the insertion of p × k
evidences belonging to p packets is (1 − w

nm)pk. Therefore,
the chance of a bit being set after the insertion of p packets
is 1− (1− (w/nm))pk. �

Lemma V.3. The probability Psat,o of an overlapping bit in
the e-BF turning into 1 (i.e., saturating) after the insertion of
p packets is given by,

Psat,o = 1−
(
1− 2w

nm

)pk
. (4)

Proof. The chance of an overlapping bit getting set to 1 due to
evidences mapping to one bucket is 1

n ×
w
m (see Lemma V.2).

When 1 ≤ g ≤ m/2, we can observe that the overlapped bit
is affected by evidences mapping to 2 buckets that share it.
Therefore, the chances of the bit getting set is 2 × w

nm . Rest
of the proof is similar to Lemma V.2. �

Theorem V.4. The probability Psat of any bit turning into 1
(i.e., saturating) after the insertion of p packets is given by,

Psat = 1−
(
(1− ng

s)(1− w
nm)pk + (ngs)(1− 2w

nm)pk
)
.

(5)

Proof. From Lemma V.2 and Lemma V.3, we know the Psat
for bits that do not overlap and that overlap with other buckets

Good Evidences

Hamming
 weight

Unique
 Representations

0%
25%

50%
75%

100%

Baseline
AND
COPY
NZ-50

Fig. 4: Comparing encoding schemes

Algorithm 1: NZ-x
input : Raw evidence (RE)
output: evidence (E)

1 size←− dlog2(m)e;
2 i←− 0; it←− 0;
3 while it < θ do
4 indit ←− int(RE[i : i+ size]);
5 E[indit]←− 1;
6 it←− it+ 1;
7 i←− i+ size;
8 end

Fig. 5: Algorithm for NZ-x Encoding Fig. 6: e-BF layouts: m = 4 and s = 16.

400 600 800 1000 1200 1400
Number of packets inserted (x 1000)

0.3

0.4

0.5

0.6

0.7

0.8

P s
at

Theoretical G=0
Actual G=0
Theoretical G=4
Actual G=4

(a) Psat

400 700 1000 1300
Number of packets inserted (x 1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P f
p

Theoretical We = 1
Actual We = 1
Theoretical We = 2
Actual We = 2
Theoretical We = 3
Actual We = 3

(b) Pfp for NZ30 Encoding.

400 700 1000 1300
Number of packets inserted (x 1000)

0.0

0.2

0.4

0.6

0.8

1.0

P f
p

Theoretical We = 1
Actual We = 1
Theoretical We = 2
Actual We = 2
Theoretical We = 3
Actual We = 3
Theoretical We = 4
Actual We = 4

(c) Pfp for NZ50 Encoding.

0 1 2 3 4 5 6 7 8
g value

0.6

0.7

0.8

0.9

1.0

P s
at

p=400000
p=600000
p=800000
p=1000000
p=1400000

(d) Psat by varying g

Fig. 7: Accuracy of the analytical framework. An e-BF with parameters s = 1024KB, m = 8bits and k = 3 was used.

respectively. Therefore, the Psat for a randomly selected bit
is the weighted sum of Psat,no and Psat,o. When g bits
overlap, ng/s is the fraction of bits in the e-BF that overlap.
Consequently, (1 − ng/s) is the number of non-overlapping
bits. �

The accuracy of our theoretical model for Psat is presented
in Figure 7a. For various values of p, we measure Psat using
simulations and compare it to the value predicted by our
analytical framework. We found our framework to be highly
accurate with an error rate of less than 10−4.

Theorem V.5. The expected usefulness U(ε) of a provided
evidence ε, as calculated by the administrator is given by,

U(ε) ≥ (m− wε)(1− Psat) . (6)

Proof. The number of non-zero bits in reference ε is m−wε.
Also, 1−Psat is the probability that a bit of the e-BF remains
zero after the insertion of p packets. Therefore, the expected
number of zero bits of εresponse that remain zero after the
insertion of all the transactions at the service element is (m−
wε)(1−Psat). When k = 1, this is the expected usefulness.
When k > 1, this becomes a lower bound on the usefulness
since the least saturated ε out of the k possible ones is the
response. �

Theorem V.6. The false positive probability for a query with
reference evidence ε is given by,

Pfp = (
Pwε

sat

Cencoding
)k (7)

Proof. The probability that the bits of a given bucket matches
ε is Pwε

sat if the bits are assumed to be independent. However,
since the encoding scheme introduces dependencies among the
bits, we add the adjustment constant Cencoding . Therefore, the
Pfp i.e., the probability that ε matching with the evidences

1 2 3 4 5 6 7 8 9 10
k value

0.00

0.25

0.50

0.75

1.00

P f
p

p=400000
p=600000
p=800000
p=1000000
p=1400000

Fig. 8: Effect of k on Pfp

P
[f
p
]

g value

k value

0

2

0.01

1

0.02

2

0.03

3 4

0.04

5

0.05

6 47

0.06

8

0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 9: Effect of k and g on Pfp.

in all k buckets is (Ppfp)
k, since the choice of k redundant

buckets is independent. �

The analytical model of Pfp is validated against our sim-
ulated framework by varying the number of transactions p.
Figure 7d and Figure 8 assumes NZ30 and NZ50 encoding
scheme which results in queries having a wε of 1, 2, 3 and
1, 2, 3, 4 respectively. Our analysis is presented separately for
each value of wε. We found our theoretical model to be
consistent with the actual behavior with an error rate of 7%.

Theorem V.7. The value of Psat achieves a local minima
when,

g = m× (1− 1
2 ln 2) and k = mn

wp ln 2 . (8)

Proof.

∂
∂n

Psat =
∂
∂n

(
1−

(
(1− ng

s
)(1− w

nm
)pk + (ng

s
)(1− 2w

nm
)pk

))
(9)

Substituting for g from Lemma V.1,

= ∂
∂n

(
1− (1− w

nm
)pk + (nm

s
− 1)

(
(1− w

nm
)pk − (1− 2w

nm
)pk

))
≈ ∂

∂n

(
1− e

−wpk
nm + (nm

s
− 1)(e

−wpk
nm − e

−2wpk
nm)

)
= −wpk

mn2 e
−wpk
nm + (nm

s
− 1)(− wpk

mn2 e
−wpk
nm + 2wpk

mn2 e
−2wpk
nm)

+ m
s
(e

−wpk
nm − e

−2wpk
nm)

The above differential is 0 when we substitute kpw
nm = ln 2

and n = 2s
m ln 2. Also, ∂2

∂2nPsat > 0 indicating that this point
is a minima. Again, substituting for n from Lemma V.1, we
get ĝ = m× (1− 1

2 ln 2) and k̂ = mn
wp ln 2. �

Figure 7d shows that Psat reaches a minima between g = 4
and g = 5 independent of the number of packets inserted.
This is consistent with the prediction of g = 4.46 from our
theoretical model from Theorem V.7. Note that U(ε) also
reaches its maxima at this point according to Theorem V.5.

Theorem V.8. The false positive rate Pfp achieves a local
minima when,

k = mn
wp ln 2 and g = 0(or)m− 1 . (10)

Proof.
∂
∂k

lnPfp ≈ ∂
∂k

lnPk∗wε
sat = ∂

∂k
wε ∗ k lnPsat

= wε

(
lnPsat +

k
Psat

∂
∂k

Psat

)
= wε ∗ Psat ∗ lnPsat + wε ∗ k ∗ ∂

∂k
Psat

To find the minima, ∂
∂k

lnPfp = 0,

= Psat ∗ lnPsat + k ∗ ∂
∂k

Psat = 0

When kpw
mn

= ln 2,

= 1
4

(
mn
s

+ 1
)
∗ ln

(
mn
s

+ 1
)
+ 1

2
ln 2 = 0

We can see that ∂
∂kPfp = 0 when kpw

mn = ln 2 and mn = s.
Also, ∂2

∂2nPfp > 0 indicates that it is a minima. Therefore,
the Pfp is minimized when ĝ = 0 (or) m − 1 (which gives
mn = s) and k̂ = mn

pw ln 2. �

Figure 8 shows that Pfp reaches its minima at k
= 5, 3, 3, 2, 1 for increasing values of p. Our theo-
retical model presented in Theorem V.8 predicts k =
4.39, 2.92, 2.19, 1.75, 1.25 for the respective values of p.

Figure 9 shows that Psat and Pfp are minimized for
different values of k and g. By allowing overlaps between
the buckets (when g = m × (1 − 1/(2 ln 2)) ≈ m/4), the
false positive rate is slightly away from the minima while the
usefulness reaches its maxima. This is because, the overlapped
bits have a higher concentration of 1s and increase the false
positive rate of queries. At the same time, the non-overlapped
bits of the bucket have a lesser concentration of 1s thereby
improving the usefulness. Therefore, we conclude that the e-
BF designer has to choose between optimizing Pfp and U(ε).

Algorithm 2: Optimal e-BF configuration
input : Storage (s), Usefulness threshold (Uth)
input : False positive threshold (FPth), Encoding HW. (w)
output: e-BF parameters m, g, k

1 p←− Number of transactions in previous epoch;
2 m←− arbitrarily high number; U ←− 0;Pfp ←− 1; g = m/4;
3 while U < Uth and Pfp > FPth do
4 n←− ds/(m− g)e k ←− mn ln 2/wp;
5 Recalculate Pfp and U ;
6 m←− m/2;
7 end
8 m←− m× 2;
9 return m, g, k

Fig. 10: Algorithm for Optimal e-BF configuration

A. Algorithm for Applying the Analytical model

The Algorithm 2 shows the steps to configure the e-BF every
epoch. It works to meet a given storage budget (s), usefulness
threshold (Uth), and a false positive threshold (FPth). The
encoding scheme is fixed beforehand and assumed to have a
Hamming weight of w. The level of security i.e., m is set to a
maximum value and exponentially reduces until the Uth and
FPth are met. Every iteration, g, k, and n are set to optimal
values based on the analytical model.

VI. SECURITY ARGUMENTS

In this section, we discuss potential threats from a dishonest
service element Si and how they are thwarted.
Guessing the evidence for a transaction. A dishonest service
element Si may try to guess the evidence for a transaction
which it did not receive. Forging an evidence with higher
Hamming weight will increase the chance of passing the
validation function but it will result in low usefulness; and
vice-versa. We handle both these cases in our scheme. The
extent of QoS inflation is quantified using phantom queries
(refer Section III-A) and discounted during QoS computation.
Security of phantom queries. A dishonest service ele-
ment cannot distinguish between phantom queries and regular
queries since they look the same. The use of Bloom filters for
storing received transactions will not help either since both
phantom transactions and lost transactions will not have an
entry in the Bloom filter.
Colluding Service elements. A dishonest service element Si
may falsely claim to have received a transaction by collud-
ing with another service element (say Sj , where j < i).
The service element Sj will attempt to compute the same
fingerprint as Si would. Though the secret key of Si and
the constant fields of the transaction are available to Sj ,
computing the value of HashChaini is difficult since it
depends on HashChaini−1. This cannot be computed unless
the secret keys of Sj+1 to Si−1 in the SFC are known
to Sj . This is impossible if there exists at least one non-
colluding service element between the two. Therefore, we can
limit the repercussions of collusions, which is a significant
improvement over the state-of-the-art [9].
Receive and drop attacks. The proof of receipt given by an
Sj , where j > i is the proof that Si actually forwarded it. If

S1 S2 S3 S4 S5 S6

SFC Elements

80

90

100

Q
o

S

7
6

.4
4

8
5

7
9

.5
5

4
8

1
.0

9
5

8

 e-BF Type-I

 e-BF Type-II

 e-BF Type-III

 B.F

 Actual QoS

Fig. 11: A comparison of the accuracy of the QoS predictions in various
adversarial conditions is shown. The SFC considered is from Figure 1.

10 20 30

Drop Rate (delta)

70

80

90

100

Q
o
S

1
0
0

9
2

8
7

1
0

0

8
5

8
1

1
0

0

7
7

7
4

 Expected 90%

 Expected 80%

 Expected 70%

 Naive B.F

 e-BF

 e-BF + Querying

Fig. 12: Effectiveness of components of our solution.

0.0 0.2 0.4 0.6 0.8 1.0
Usefulness

20

40

60

80

100

Q
oS

Adversary 80% QoS
Benign Element
Lower Limit
Upper Limit

Fig. 13: Fixing the right useful-
ness threshold

40 50 60 70 80 90 100 110
Transaction rate (x1000)

60

70

80

90

100

Q
oS

Measured QoS
Higher Limit
Lower Limit

Fig. 14: Transaction rates sup-
ported by an e-BF

Si is dishonest, it will only be able to transfer the failure from
the link Si−1 → Si to the link Si → Si+1. This is in line with
prior theoretical works [15].
Secret Parameters and effect of leaks. The e-BF parameters
as well as the shared secret key with the Administrator to be
changed at epoch boundaries for this.

VII. EVALUATION AND DISCUSSION

In this section, we discuss the evaluation framework and a
case study on measuring QoS of a web server. The e-BF data-
structure and the associated schemes are developed as Python
modules. We used multiple topologies and anonymized real-
world https traces collected from a website for evaluation. We
also cover other scenarios (e.g., variation in transaction size
and rate) using synthetic traces. The ground truth QoS value
is used as a reference. The objective is to analyze the ability
of the proposed solution to match the ground truth QoS values
even when the service element lies.

An e-BF of size 4.47MB with cell size m = 8 bits,
redundancy factor k = 2, cell overlap g = 2 is used. NZ-
50 encoding is assumed for the evidence. Such an e-BF is
capable of providing usefulness of at least 60% and an error
rate < 3%. A Bloom filter of size 3.65MB with a false positive
rate < 3% is used for comparison with the e-BF. We evaluate
our scheme at a transaction rate of 50, 000 requests per second,
which is comparable to workload intensive real-world setups
such as Wikipedia.

A. Case Study: Web server

We consider the SFC for web applications such as the one
shown in Figure 1. The webserver S6 is assumed to have a
flaw, which results in δ% of transactions getting dropped. We
assume that the service elements in the SFC could be dishonest
and implement an e-BF. For comparison, we also consider the
scenario where the service elements implement a Bloom filter.

Storage → s = X s = 2X s = 5X
Security ↓ Benign Adv. Benign Adv. Benign Adv.
m = 4 81.5% 91.6% 81.1% 89.2% 80.7% 85%
m = 8 79.1% 85.1% 80.8% 84.4% 80.7% 83.4%
m = 16 74.7% 72.3% 80.3% 78.9% 80.7% 80.1%

TABLE I: Trade-off between Security (m) and Storage (s). Ground
truth QoS is 80%. Measured QoS values are shown.

Modeling the adversary. We consider three types of adver-
sarial service elements. Type-I forges evidences such that its
probability of passing the validation test is maximized. For
instance, it could forge evidences which have all bits set to
1, i.e., Hamming weight of 8 for m = 8. Type-II and Type-
III forge evidences which have more usefulness compared to
Type-I but may not always pass the validation test. Type-II and
Type-III do so by forging evidences with a Hamming weight
of 7 and 6 respectively.
Results. Figure 11 shows the QoS of the service elements in

the SFC for different adversaries and δ = 20% at S6. For
lost transactions, the Bloom filter case simply replies with
“transaction received”, thereby successfully hiding the failure.
Thus, as seen in Figure 11, it can falsely project 100% QoS
despite failures. However, when e-BF is used at S6, the QoS
measured is ≈ 80%. The maximum inflation achieved is only
1% (by the Type-III adversary).

Further, Figure 12 shows the extent to which the e-BF
structure and phantom queries contribute to the QoS prediction
accuracy in the case of Type-III adversary. For δ = 20, with
just e-BF, the maximum inflation in QoS is 5%. Phantom and
positive queries help narrow it down to 1%.

The threshold value of usefulness is fixed at 60%. A
high threshold will underestimate the QoS of benign ser-
vice elements, while a lower threshold will make it easy
to cheat. A rough guide to fixing the threshold value (i.e.,
0.4 <= threshold <= 0.6) is presented in Figure 13.
We also evaluate the resilience of the e-BF to a sudden
increase in the transaction arrival rate. Figure 14 shows that
the QoS prediction accuracy is within acceptable limits for
up to 90, 000 requests per second on an e-BF designed to
handle 50, 000 requests per second. The transaction sizes and
topology do not affect the results, as expected.

Table I shows the measured QoS (both in benign and
adversarial scenarios when ground truth QoS is 80%) for
different combinations of storage space s and level of security
m. To establish a baseline for the maximum achievable QoS
prediction accuracy, we consider s = 5X , where X is the
storage budget. In this case, we can observe that m = 16

provides the best QoS in adversarial conditions as expected.
When s = X , the following observations can be made: (1)
Both m = 4 and m = 8 do not provide enough security,
resulting in inflated QoS in adversarial scenarios; (2) m = 16
ends up saturating the e-BF resulting in conservative QoS
values (¡ 80%). When the storage is doubled to s = 2X ,
setting m = 16 gives the most accurate QoS estimate.

B. Overheads.

The e-BF must store P = 50, 000 requests/second ×
100 seconds number of transactions, which takes afford-
able in-memory storage of about 4.47MB per service el-
ement to maintain a prediction accuracy of 97%. On the
other hand, a comparable hash table requires 53 bits ×
50, 000 requests/second × 100 seconds, where the combined
size of TID and evidence is 53 bits; resulting in 33.125MB
of storage.

Our experiments indicate that over 6.5 million
OpenSSL [18] SHA-256 hash digest computations can
be performed per second for 1024 Byte transactions on a
multi-core Intel Core-i7 processor. This is sufficient for both
the Administrator and the service elements (using one core).

C. Limitations and Future work

Our solution restricts collusion between service elements
to a great extent but cannot eliminate it. While it is possible
to solve this by dynamically interleaving a few trusted service
elements in the SFC chain, the overheads incurred will be high.
We believe that Physically Unclonable Functions (PUFs [19])
can be used instead. The PUF is capable of tying a device to
an unclonable evidence, thereby eliminating collusions.

The proposed solution also opens up the following research
directions, some of which are both important and interesting.
Stochastic nature of e-BF. Since the arrival of transactions
and queries into e-BF is non-deterministic, an analysis of the
stochastic nature of e-BF is required. It may, for instance,
help answer questions like ‘Is it advantageous for an adversary
to forge evidences at the starting or towards the end of the
epoch?’.
Hardware. An interesting direction is to see if running the
e-BF in an encrypted enclave such as Intel SGX [20] can
add value in terms of security. Other enhancements include
accelerating the e-BF primitives using an FPGA and using
the Physically Unclonable Function (PUF [19]) response in
evidence calculations.
Networking. We have demonstrated the applicability of e-BF
using a simple SLA use-case. Implementing more complex
SLAs such as those involving delay guarantees could be worth
exploring.

VIII. CONCLUSIONS

This paper addresses the problem of reliably measuring QoS
(with 97% prediction accuracy) in a multi-vendor SFC setting
using a novel data-structure, called e-BF, that uses storage
resources judiciously. We note that better QoS prediction
accuracy can be achieved by allocating more storage. Prior
works have explored the storage space vs. QoS prediction

accuracy trade-offs (using Bloom filters). To the best of our
knowledge, this is the first work to analyze the trade-off
between storage space, security, and QoS prediction accuracy.
We believe that the proposed solution is the first step towards
solving this problem and reach out to the research community
to enhance the security guarantees.

ACKNOWLEDGEMENT

This work is supported by DST-FIST Grant Program 2016,
from Department of Science and Technology, India. Professor
Ramamurthy was supported by NSF Grants (NSF OAC-
1541442 and CNS-1817105). Thanks to Kris Gopalakrishnan
Endowment and Microsoft Research for their travel grants.

REFERENCES
[1] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-

chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[2] “IBM Managed Security Services for Network Fire-
walls,” accessed: 2018-01-5. [Online]. Available: https://www-
935.ibm.com/services/us/igs/pdf-iss-contracts/ireland-7799-00.pdf

[3] “Dedicated Service Level Agreement,”
https://www.liquidweb.com/about-us/policies/dedicated-sla/, accessed:
2018-01-5.

[4] “Service Level Agreements Understanding Practical Remedies in
Data Center Leases,” accessed: 2018-01-5. [Online]. Available:
http://www.datacenterknowledge.com/industry-perspectives/service-
level-agreements-understanding-practical-remedies-data-center

[5] “Summary of the October 22, 2012 AWS Service Event in
the US-East Region,” accessed: 2018-01-5. [Online]. Available:
https://aws.amazon.com/message/680342/

[6] “Summary of Windows Azure Service Disruption
on Feb 29th, 2012,” accessed: 2018-01-5. [On-
line]. Available: https://azure.microsoft.com/en-us/blog/summary-of-
windows-azure-service-disruption-on-feb-29th-2012/

[7] J. Sommers, P. Barford, N. Duffield, and R. Amos, “Accurate and
Efficient SLA Compliance Monitoring,” SIGCOMM Comput. Commun.
Rev. (2007).

[8] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford, “Path-quality
monitoring in the presence of adversaries,” ser. SIGMETRICS ’08. New
York, NY, USA: ACM, 2008, pp. 193–204.

[9] X. Zhang, Z. Zhou, H.-C. Hsiao, A. Perrig, and P. Tague, “ShortMAC:
Efficient data plane fault localization,” in NDSS, 2012.

[10] C. Basescu, Y.-H. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in IEEE S&P (2016).

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving accuracy
in end-to-end packet loss measurement,” ser. SIGCOMM ’05. New
York, NY, USA: ACM, 2005, pp. 157–168.

[13] E. Stephan, “IP Performance Metrics IPPM Metrics Registry,” Internet
Requests for Comments, RFC Editor, BCP 108, August 2005.

[14] B. Claise, A. Johnson, and J. Quittek, “Packet sampling PSAMP protocol
specifications,” Internet Requests for Comments, RFC Editor, RFC 5476,
March 2009.

[15] B. Barak, S. Goldberg, and D. Xiao, “Protocols and lower bounds for
failure localization in the internet,” in EUROCRYPT (2008).

[16] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy bloom filters
for multi-set membership testing,” ser. SIGMETRICS ’16. New York,
NY, USA: ACM, 2016, pp. 139–151.

[17] S. Xiong, Y. Yao, Q. Cao, and T. He, “kBF: a bloom filter for key-value
storage with an application on approximate state machines,” in IEEE
INFOCOM 2014, April 2014, pp. 1150–1158.

[18] “OpenSSL Speed Test,” accessed: 2018-04-1. [Online]. Available:
https://www.openssl.org/docs/manmaster/man1/speed.html

[19] C. Herder, M. D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-
able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126–1141, Aug 2014.

[20] “Intel Software Guard Extensions (Intel SGX),”
https://software.intel.com/en-us/sgx, accessed: 2018-04-1.

