
Chapter 1
Introduction

1.1 Introduction

Optimization methods play an important role in many disciplines such as signal
processing, communication networks, neural networks, economics, operations re-
search, manufacturing systems, vehicular traffic control, service systems and sev-
eral others. For instance, in a general communication network, a goal could be to
optimally allocate link bandwidth amongst competing traffic flows. Similarly, an
important problem in the setting of traffic signal control is to dynamically find the
optimal order to switch traffic lights at signal junctions and the amount of time that
a lane signal should be green when inputs such as the number of vehicles waiting at
other lanes are provided. In the case of a manufacturing plant, an important problem
is to decide the optimal order in which to allocate machine capacity for manufac-
turing various products on any day given the demand patterns for various products.
These are only a few specific instances of innumerable problems across various dis-
ciplines that fall within the broad category of optimization problems. A usual way
to model these problems analytically is by defining an objective or a cost function
whose optimum constitutes the desired solution. For instance, in the case of the traf-
fic signal control problem, a cost function could be the sum of queue lengths of
vehicles waiting across all lanes at a red signal intersection. Thus, an optimal signal
switching order would ensure that the sum of the queue lengths of waiting vehicles
is minimized and thereby traffic flows are maximized. In general, a cost function is
designed to penalize the less desirable outcomes. However, in principle, there can
be several cost functions that have the same (or common) desired outcome as their
optimum point. Suitably designing a cost objective in order to obtain the desired
outcome in a reasonable amount of time when following a computational procedure
could be a domain-specific problem. For instance, in the context of the traffic signal
control problem mentioned above, another cost objective with the same optimum
could be the sum of squared queue lengths of waiting vehicles instead of the sum of
queue lengths. Optimization problems can be deterministic or stochastic, as well as
they can be static or dynamic. We discuss this issue in more detail below.
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A general optimization problem that we shall be concerned about for the most
part in this book has the following form:

Find θ ∗ that solves min
θ∈C

J(θ ), (1.1)

where J : RN → R is called the objective function, θ is a tunable N-dimensional
parameter and C ⊂ RN is the set in which θ takes values. If one has complete
information about the function J and its first and higher order derivatives, and about
the set C, then (1.1) is a deterministic optimization problem. If on the other hand,
J is obtained as J(θ ) = Eξ [h(θ ,ξ )], where Eξ [·] is the expected value over noisy
observations or samples h(θ ,ξ ) of the cost function with random noise ξ , and one
is allowed to observe only these samples (without really knowing J), then one is in
the realm of stochastic optimization. Such problems are more challenging because
of the added complexity of not knowing the cost objective J(·) precisely and to find
the optimum parameter only on the basis of the aforementioned noisy observations.

As we shall subsequently see, many times one resorts to search algorithms in
order to find an optimum point, i.e., a solution to (1.1). In stochastic optimization
algorithms, it is not uncommon to make a random choice in the search direction – in
fact most of our treatment will be centered around such algorithms. Thus, a second
distinction between deterministic and stochastic optimization problems lies in the
way in which search progresses - a random search algorithm invariably results in
the optimization setting being stochastic as well.

Suppose now that the objective function J has a multi-stage character, i.e., is of

the form J(θ ) =
N

∑
i=1

E[hi(Xi)], where N denotes the number of stages and Xi is the

state of an underlying process in stage i, i = 1, . . . ,N. The state captures the most
important attributes of the system that are relevant for the optimization problem.

Further, hi denotes a stage and state-dependent cost function. Let θ �= (θ1, . . . ,θN)
T

denote a vector of parameters θ j, j = 1, . . . ,N and let Xi depend on θ . The idea here
is that optimization can be done one stage at a time over N stages after observing the
state Xi in each stage i. Here, the value θi of the parameter in stage i has a bearing on
the cost of all subsequent stages i+1, . . . ,N. This in short is the problem of dynamic
optimization. Approaches such as dynamic programming are often used to solve
dynamic optimization problems. Other manifestations of dynamic optimization, say
over an infinite number of stages or in continuous time also exist. In relation to the
above (multi-stage) problem, in static optimization, one would typically perform
a single-shot optimization where the parameters θ1, . . . ,θN would be optimized all
at once in the first stage itself. Broadly speaking while in a dynamic optimization
problem with multiple stages, one makes decisions instantly as states are revealed,
in static optimization, there is no explicit notion of time or perhaps even state as all
decisions can be made at once.
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An important class of multi-stage problems are those with an infinite number of
stages and where the objective function is a long-run average over single-stage cost
functions. More precisely, the objective function in this case has the form

J(θ ) = lim
N→∞

1
N

E

[
N

∑
i=1

hi(Xi)

]
, (1.2)

where Xi as before is the state in stage i that we assume depends on the parameter
θ . An objective as (1.2) would in most cases not be analytically known. A usual
search procedure to find the optimum parameter in such problems would run into
the difficulty of having to estimate the cost over an infinitely long trajectory before
updating the parameter estimate, thereby making the entire procedure very tedious.

Another important class of optimization problems is that of constrained opti-
mization. Here, the idea is to optimize a given objective or cost function subject to
constraints on the values of additional cost functions. Thus consider the following
variation to the basic problem (1.1).

Find θ ∗ for which J(θ ∗) = min
θ∈C
{J(θ ) | Gi(θ )≤ αi, i = 1, . . . , p}. (1.3)

Here, Gi(·) and αi, i = 1, . . . , p are certain additional cost functions and constants,
respectively, that constitute the functional constraints. In the context of the traffic
signal control problem where the objective function to be minimized is the sum of
queue lengths on the various lanes, constraints could be put for the traffic on the
side roads so that the main road traffic gets higher priority. For instance, a constraint
there could specify that the traffic signal for a side road lane can be switched to
green only provided the number of vehicles waiting on such a lane exceeds ten.
Similarly, in a communication network, the objective could be to maximize the av-
erage throughput. A constraint there could specify that the average delay must be
below a threshold. Another constraint could similarly be on the probability of packet
loss during transmission being below a small constant, say 0.01.

While for the most part, we shall be concerned with optimization problems of the
form (1.1), we shall subsequently also consider constrained optimization problems
of the type (1.3). The objective function (and also the constraint functions in the
case of (1.3)) will be considered to be certain long-run average cost functions.

We shall present various stochastic recursive search algorithms for these prob-
lems. Many of the stochastic search algorithms for optimization can be viewed as
stochastic (i.e., with noise) counterparts of corresponding deterministic search al-
gorithms such as gradient and Newton methods. In the setting of stochastic op-
timization, where the form of the objective function as well as its derivatives is
unknown, one needs to resort to estimation of quantities such as the gradient and
Hessian from noisy function measurements or else through simulation. A finite
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difference estimate of the gradient as proposed by Kiefer and Wolfowitz [18] re-
quires a number of function measurements or simulations that is linear in the number
of parameter components. A similar estimate of the Hessian [14] requires a number
of function measurements that is quadratic in the number of measurements or sim-
ulations. When the parameter dimension is large, algorithms with gradient/Hessian
estimators as above would be computationally inefficient because such algorithms
would update once only after all the required function measurements have been
made or simulations conducted. It is here that simultaneous perturbation methods
play a significant role. In a paper published in 1992, Spall presented the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm that estimated the
gradient of the objective function using exactly two function measurements (or sim-
ulations) made from perturbed values of the parameter, where each component of the
parameter is perturbed along random directions using independent random variates
most commonly distributed according to the Bernoulli distribution. A second well-
known simultaneous perturbation technique that in fact came before SPSA was the
smoothed functional (SF) scheme [17]. The idea in this scheme is some what sim-
ilar to SPSA, however, the form of the gradient estimator is considerably different
as perturbations that are distributed as per the Gaussian, Cauchy or uniform distri-
butions can be used. A basic format for the simultaneous perturbation technique is
described in Fig. 1.1.

Propose θ

Perturbation

Simulate

Update θ

Fig. 1.1 Overall flow of a basic simultaneous perturbation algorithm.

During the course of the last ten to fifteen years, there has been a spurt of activity
in developing Newton-based simultaneous perturbation methods. In [27] and [3],
Newton-based analogs of the SPSA method were proposed. Further, in [4], Newton-
based analogs of the SF algorithm have been proposed. We may mention here that
in this text, by simultaneous perturbation methods, we refer to the entire family
of algorithms that are based on either gradient or gradient and Hessian estimates
that are obtained using some form of simultaneous random perturbations. While for
the most part, we shall be concerned with static optimization problems, we shall
also consider later, the problem of dynamic stochastic control or of decision making
under uncertainty over a sequence of time instants. This problem will subsequently
be cast as one of dynamic parameter optimization. We shall also present towards the
end, applications of the proposed methods and algorithms to service systems, road
traffic control and communication networks. A common unifying thread in most of
the material presented in this text is of simultaneous perturbation methods.



1.2 Overview of the Remaining Chapters 7

1.2 Overview of the Remaining Chapters

We now provide a brief overview of the remainder of this book. In Chapter 2,
we briefly discuss well-known local search algorithms. These have been described
mainly for the case of deterministic optimization. However, we also discuss briefly
the case of stochastic optimization as well. The algorithms for stochastic optimiza-
tion that we present in later chapters will be based on these algorithms.

The fundamental stochastic algorithm due to Robbins and Monro [22] is almost
six decades old. It estimates the zeros of a given objective function from noisy cost
samples. Most stochastic search algorithms can be viewed as variants of this algo-
rithm. In Chapter 3, we describe the R-M algorithm. We also present in this chapter,
a general multi-timescale stochastic approximation algorithm that can be viewed
as a variant of the R-M algorithm. Multi-timescale stochastic approximation al-
gorithms play a significant role in the case of problems where the computational
procedure would typically involve two nested loops where an outer loop update can
happen only upon convergence of the inner loop procedure. A specific instance is the
case when the objective function is a long-run average cost of the form (1.2). Such
an objective function is useful in scenarios where one is interested in optimizing
steady-state system performance measures, such as minimizing long-run average
delays in a vehicular traffic network or the steady-state loss probability in packet
transmissions in a communication network. A regular computational procedure in
this case would perform the outer loop (parameter) update only after convergence of
the inner loop procedure (viz., after obtaining the long-run average cost correspond-
ing to a given parameter update). The same effect can be obtained with the use of
coupled simultaneous stochastic updates that are however governed with diminish-
ing step-size schedules that have different rates of convergence - the faster update
governed with a slowly diminishing schedule and vice versa. Borkar [12, 13] has
given a general analysis of these algorithms. We discuss the convergence of both
the R-M and the multi-timescale algorithms.

Amongst the first stochastic gradient search algorithms based on estimating the
gradient of the objective function using noisy cost samples is the Kiefer-Wolfowitz
(K-W) algorithm [18] due to Kiefer and Wolfowitz. We review this algorithm in Chap-
ter 4. While it was originally presented for the case of scalar parameters, in the case
of vector-valued parameters, the K-W algorithm makes function measurements after
perturbing at most one parameter component. Thus, K-W is not efficient under high-
dimensional parameters since the number of function measurements or system simu-
lations required to estimate the gradient grows linearly with the parameter dimension.

Spall invented the simultaneous perturbation stochastic approximation (SPSA)
algorithm [23], [28] that requires only two function measurements at each instant
regardless of the parameter dimension, by simultaneously perturbing all parame-
ter components using a class of i.i.d. random variables. The most commonly used
perturbations in this class are symmetric, ±1-valued, Bernoulli-distributed random
variables. A one-simulation version of this algorithm was subsequently presented in
[24]. However, it was not found to be as effective as regular two-simulation SPSA.
In [7], certain deterministic constructions for the perturbation random variables have
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been explored for both two-simulation and one-simulation SPSA. These have been
found to yield better results as compared to their random perturbation counterparts.
We review the SPSA algorithm and its variants in Chapter 5.

Katkovnik and Kulchitsky [17] presented a smoothed functional (SF) approach
that is another technique to estimate the gradient of the objective function using
random perturbations. This technique is some what different from SPSA. In partic-
ular, the properties required of the perturbation random variables here are seen to be
most commonly satisfied by Gaussian and Cauchy distributed random variables. If
one considers a convolution of the gradient of the objective function with a smooth-
ing density function (such as that of Gaussian or Cauchy random variables), then
through a suitable integration-by-parts argument, one can rewrite the same as a con-
volution of the gradient of the probability density function (p.d.f.) with the objective
function itself. The derivative of the smoothing p.d.f. is seen to be a scaled version
of the same p.d.f. This suggests that if the perturbations are generated using such
p.d.fs, only one function measurement or system simulation is sufficient to estimate
the gradient of the objective (in fact, the convolution of the gradient, that however
converges to the gradient itself in the scaling limit of the perturbation parameter).
A two-simulation variant of this algorithm that incorporates balanced estimates has
been proposed in [29] and found to perform better than its one-simulation counter-
part. We review developments in the gradient-based SF algorithms in Chapter 6.

Spall [27] presented simultaneous perturbation estimates for the Hessian that
incorporate two independent perturbation sequences that are in the same class of
sequences as used in the SPSA algorithm. The Hessian estimate there is based on
four function measurements or system simulations, two of which are the same as
those used for estimating the gradient of the objective. In [3], three other Hessian
estimators were proposed. These are based on three, two and one system simula-
tion(s), respectively. In Chapter 7, we review the simultaneous perturbation estima-
tors of the Hessian. An issue with Newton-based algorithms that incorporate the
Hessian is in estimating the inverse of the Hessian matrix at each update epoch. We
also discuss in this chapter some of the recent approaches for inverting the Hessian
matrix.

Bhatnagar [4] developed two SF estimators for the Hessian based on one and two
system simulations, respectively, when Gaussian p.d.f. is used as the smoothing
function. Using an integration-by-parts argument (cf. Chapter 6), twice, the Hessian
estimate is seen to be obtained from a single system simulation itself. A two-sided
balanced Hessian estimator is, however, seen to perform better than its one-sided
counterpart. An interesting observation here is that both the gradient and the Hessian
estimates are obtained using the same simulation(s). We review the SF estimators of
the Hessian matrix in Chapter 8.

In Chapter 9, we consider the case when the optimization problem has a form sim-
ilar to (1.1); however, the underlying set C is discrete-valued. Further, we shall let the
objective function be a long-run average cost as with (1.2). In [11], two gradient search
algorithms based on SPSA and SF have been proposed for this problem. A randomized
projection approach was proposed there that is seen to help in adapting the continuous
optimization algorithms to the discrete setting. We present another approach based on
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certain generalized projections that can be seen to be a mix of deterministic and ran-
domized projection approaches, and result in the desired smoothing of the dynamics
of the underlying process. Such a projection mechanism would also result in a lower
computational complexity as opposed to a fully randomized projection scheme.

Next, in Chapter 10, we will be concerned with constrained optimization prob-
lems with similar objective as (1.3). We shall, in particular, be concerned here with
the case when the objective has a long-run-average form similar to (1.2). Thus, in
such cases, neither the objective nor the constraint region is known analytically to
begin with. In [8], stochastic approximation algorithms based on SPSA and SF es-
timators for both the gradient and the Hessian have been presented. The general
approach followed is based on forming the Lagrangian – the Lagrange multipliers
are updated on a slower timescale than the parameter that, in turn, is updated on
a slower scale in comparison to that on which data gets averaged. We will review
these algorithms in Chapter 10.

Reinforcement learning (RL) algorithms [2] are geared towards solving stochas-
tic control problems using only real or simulated data when the system model (in
terms of the transition probabilities) is not known. Markov decision process (MDP)
is a general framework for studying such problems. Classical approaches such as
policy iteration and value iteration for solving MDP require knowledge of transi-
tion probabilities. Many RL algorithms are stochastic recursive procedures aimed
at solving such problems when transition probabilities are unknown. Actor-critic
(AC) algorithms are a class of RL algorithms that are based on policy iteration and
involve two loops - the outer loop update does policy improvement while the inner
loop procedure is concerned with policy evaluation. These algorithms thus incorpo-
rate two-timescale stochastic approximation. In [10, 1, 6], AC algorithms for various
cost criteria such as infinite horizon discounted cost, long-run average cost as well
as total expected finite horizon cost, that incorporate simultaneous perturbation gra-
dient estimates have been proposed. We shall review the development of the infinite
horizon algorithms in Chapter 11.

Chapter 12 considers the problem of optimizing staffing levels in service systems.
The aim is to adapt the staffing levels as they are labor intensive and have a time
varying workload. This problem is, however, nontrivial due to a large number of
parameters and operational variations. Further, any staffing solution is constrained
to maintain the system in steady-state and be compliant to aggregate SLA con-
straints. We formulate the problem using the constrained optimization framework
where the objective is to minimize the labor cost in the long run average sense and
the constraint functions are long run averages of the SLA and queue stability con-
straints. Using the ideas of the algorithms proposed in Chapter 10 for a generalized
constrained optimization setting, we describe several simulation optimization
methods that have been originally proposed in [19] for solving the labor cost op-
timization problem. The presented algorithms are based on SPSA and SF gradi-
ent/Hessian estimates. These algorithms have been seen in [19] to exhibit better
overall performance vis-a-vis the state-of-the-art optimization tool-kit OptQuest,
while being more than an order of magnitude faster than Optquest.
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In Chapter 13, we consider the problem of finding optimal timings and the order
in which to switch traffic lights given dynamically evolving traffic conditions. We
describe here applications of the reinforcement learning and stochastic optimization
approaches in order to maximize traffic flow through the adaptive control of traffic
lights. We assume, however, as in the case of real-life situations that only rough
estimates of the congestion levels are available, for instance, whether congestion is
below a lower threshold, above an upper threshold or is in between the two. All
our algorithms incorporate such threshold levels in the feedback policies and find
optimal policies given a particular set of thresholds. For instance, in a recent work
[21], we considered Q-learning-based traffic light control (TLC) where the features
are obtained using such (aforementioned) thresholds. We also describe similar other
algorithms based on simulation optimization methods. An important question then
is to find optimal settings for the thresholds themselves. We address this question
by incorporating simultaneous perturbation estimates to run in tandem with other
algorithms. An important observation is that our algorithm shows significantly better
empirical performance as compared to other related algorithms in the literature.
Another interesting consequence of our approach is that when applied together with
reinforcement learning algorithms, such methods result in obtaining an optimal set
of features from a given parametrized feature class.

In Chapter 14, we select and discuss three important problems in communication
networks, where simultaneous perturbation approaches have been found to be signif-
icantly useful. We first consider the problem of adaptively tuning the parameters in
the case of random early detection (RED) adaptive queue management scheme pro-
posed for TCP/IP networks. The original scheme proposed by Floyd [15] considers
a fixed set of parameters regardless of the network and traffic conditions. We address
this problem using techniques from constrained optimization [20] and apply simulta-
neous perturbation approaches that are found to exhibit excellent performance. Next,
we consider the problem of tuning the retransmission probability parameter for the
slotted Aloha multi-access communication system. The protocol as such specifies a
fixed value for the same regardless of the number of users sending packets on the
channel and the channel conditions. We propose a stochastic differential equation
(SDE)-based formulation [16, 9] in order to find an optimal parameter trajectory over
a finite time horizon. We also consider the problem of optimal pricing in the Inter-
net. The idea here is that in order to provide a higher quality of service to a user who
is willing to pay more, one needs to find optimal strategies for fixing prices of the
various services offered. Our techniques [30] play a role here as well and are found
to exhibit significantly better performance in comparison to other known methods.

Finally, in Appendices A-E, we present some of the basic material needed in the
earlier chapters. In particular, we present (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) the Kushner-
Clark theorem for convergence of projected stochastic approximations. Some of the
background material as well as the main results used in other chapters have also
been summarized in these appendices.
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1.3 Concluding Remarks

Stochastic approximation algorithms are one of the most important class of tech-
niques for solving optimization problems involving uncertainty. Simultaneous per-
turbation approaches for optimization have evolved into a rich area by themselves
from the viewpoint of both theory and numerous highly successful applications.
Several estimators for the gradient and Hessian that involve simultaneous perturba-
tion estimates have been developed in recent times that are seen to show excellent
performance. SPSA and SF algorithms constitute powerful methods for stochastic
optimization that have been found useful in many disciplines of science and engi-
neering. The book reference of [28] provides an excellent account of SPSA. Surveys
on the SPSA algorithm are available in [26], [25]. Also, [5] provides a more recent
survey on simultaneous perturbation algorithms involving both SPSA and SF esti-
mators. The current text is a significantly expanded version of [5].
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