
CS5691: Pattern recognition and machine learning
Mid-term exam - Solutions

Course Instructor : Prashanth L. A.

I. Short Answer Questions

1. Let (x1, y1, z1), . . . , (xn, yn, zn) be a set of data points such that xi ∈ Rd and yi, zi ∈ R.
Let yi + 2zi = 3 for i = 1, . . . , n. Let A be a (n× d) matrix with rows xT

i . Let

ûML = argmin
u∈Rd

∑
i

(uTxi − yi)2, v̂ML = argmin
v∈Rd

∑
i

(vTxi − zi)2

Give an expression relating ûML and v̂ML.

Answer: Let b be a n-vector with each entry 3, A be a (n × d) matrix with rows xT
i .

Then, A (ûML + 2v̂ML)T = b.

2. Let a1, a2, . . . , an be the importances of the data points (x1, y1), . . . , (xn, yn) with xi ∈
Rd and yi ∈ R. Consider the weighted least squares regression problem, with the
following objective:

R(w) =

n∑
i=1

ai(w
>xi − yi)2.

Give an expression for the minimiser of R(w).

Answer: Let C be a diagonal matrix with entries ai, A be a n × d matrix with rows
xT
i , and Y be a n-dimensional vector with entries yi. Then, the minimiser w∗ of R(w)

is given by
w∗ = (ATCA)

−1
ATCY.

3. Suppose we have the following four points x1 = (1, 1), x2 = (−1, 3), x3 = (2, 4), and
(y1, y2, y3) = (5, 11, 18). Then, min

w

∑3
i=1(x

T
iw − yi)2 is

(a) ∈ (0, 10).

(b) > 10.

(c) = 0.

(d) < 0.

Answer: (c)

4. Consider a dataset for classification {(Xi, yi), i = 1, . . . , n}, with yi ∈ {−1,+1}, formed
using n i.i.d. samples, with equi-probable classes, and with univariate Gaussian class
conditional densities. The means for the latter are 10 and −1, corresponding to class
labels −1 and +1, respectively, while the variances are equal. Suppose that the per-
ceptron algorithm is run on this dataset. Then, on any such dataset of n samples, is
the perceptron algorithm guaranteed to converge? Provide a yes or no for the answer.

Answer: No.



5. Consider a dataset with the following four data points: (0, 0), (0, 1), (1, 0), (1, 1), with
corresponding class labels 1,−1,−1, 1, respectively. The dataset is clearly(?) not lin-
early separable. Consider adding another co-ordinate to each data point. Which of the
following schemes will ensure that the resulting dataset in three dimensions is linearly
separable?

(a) Third co-ordinate value is equal to first one for each data point.

(b) Third co-ordinate value is 1 for one of the data points, and 0 for the rest three of
them.

(c) Third co-ordinate value is the negative of the second value for each data point.

(d) None of the above.

Answer: (b)

6. Consider a dataset of n points x1, . . . , xn, where xi is drawn from a Gaussian distribution
with mean µ, and variance σ2i > 0, for i = 1, . . . , n. What is the ML estimate for µ,
when the variances σ21, . . . , σ

2
n are known?

Answer: µ̂ML =
(∑n

i=1
1
σ2
i

)−1∑n
i=1

xi
σ2
i
.

7. Given a dataset {(xi, yi), i = 1, . . . , n}, where xi ∈ Rd, ∀i. Consider the ridge regression

solution Ŵ (λ) = CY , where C = (ATA+λI)−1AT, and A is a (n×d) matrix with rows
xT
i . Is C a projection matrix?

Answer: No.

8. Specify a conjugate prior when the likelihood is an exponential distribution with pa-
rameter θ > 0.

Answer: Gamma(α, β).

9. Consider a classification dataset, with two-dimensional inputs (−1, 1), (1, 3), (−3, 3)
having class label “−1”, and input data points (0, 1), (2, 2), (3, 1) having class label
“1”. Let x1,x2,x3 denote the inputs with class label −1, and x4,x5,x6 denote the
inputs with class label 1.

Answer the following: (1 mark each)

(a) Find a vector W ∗ such that W Txi > 0, for i = 1, . . . , 6.

Answer: W ∗ = (−1, 4).

(b) Suppose the perceptron algorithm is run on this dataset. Using ‖W ∗‖, M =
maxi=1,...,6 ‖xi‖2, and β = mini=1,...,6 x

T
iW
∗, provide an upper bound on the num-

ber of times the iterate, say wk, of the perceptron algorithm is updated, before
the stopping condition is reached (i.e., an iterate wk that correctly classifies all the
input data points).

Answer: The required bound is ‖W
∗‖2M
β2 = 17×18

1 = 306.



II. Problems that require a detailed solution

1. Consider a two class two-dimensional problem, where the class conditional densities are
Gaussian with means µ0 and µ1. Assume equi-probable classes.

Answer the following: (2+2+1 marks)

(a) Suppose that the covariance matrix for each class is σ2I, for some σ2 > 0. Consider
the following classifier:

h1(x) =

{
0 if ‖x− µ0‖ > ‖x− µ1‖ ,
1 otherwise.

Is h1 optimal for the zero-one loss function? Justify your answer.

(b) Suppose that the covariance matrix is

[
a b
b c

]
, for some positive constants a, b, c.

Then, is h1 optimal for the classification problem, with rest of the parameters as
in the part above?

(c) Let µ1 = [0, 0]T, µ2 = [3, 3]T, and the covariance matrix entries are given by
a = 1.1, b = 0.3, c = 1.9. Classify the input vector x̃ = [1.0, 2.2]T, and compare
with the prediction h1(x̃).

Answer:

(a) Yes, because it obeys Bayesian classification rule, and it says, if q0 > q1 predict 0
else predict 1, i.e.,

1

(2π)n/2σ
exp

(
−(x− µ0)

T
(x− µ0)

2σ2

)
>

1

(2π)n/2σ
exp

(
−(x− µ1)

T
(x− µ1)

2σ2

)
=⇒ −‖x− µ0‖2 > −‖x− µ1‖2

=⇒ ‖x− µ0‖ < −‖x− µ1‖

(b) No, h1 is not optimal.

qi(x) =
1√

(2π)n|Σ|
exp

[
−1

2
(x− µi)

T

(
1

(ac− b2)

[
c −b
−b a

])
(x− µi)

]
=⇒ h2(x) = 0 if (x− µ0)

T

[
c −b
−b a

]
(x− µ0) < (x− µ1)

T

[
c −b
−b a

]
(x− µ1)

h2(x) = 1 otherwise.

h2(x) is the optimal classifier. Now, h2(x) = h1(x) if a = c and b = 0, otherwise
h1 6= h2 and thus h1 is not optimal.



(c) For h2(x̃),

(x̃− µ0)
T

[
c −b
−b a

]
(x̃− µ0) =

[
1 2.2

] [ 1.9 −0.3
−0.3 1.1

] [
1
2.2

]
=
[

1.24 2.12
] [ 1

2.2

]
= 5.904

(x̃− µ1)
T

[
c −b
−b a

]
(x̃− µ1) =

[
−2 −0.8

] [ 1.9 −0.3
−0.3 1.1

] [
−2
−0.8

]
=
[
−3.56 −0.28

] [ −2
−0.8

]
= 7.344

Thus, h2(x̃) = 0 as

(x̃− µ0)
T

[
c −b
−b a

]
(x̃− µ0) < (x̃− µ1)

T

[
c −b
−b a

]
(x̃− µ1)

Now, for h1(x̃),

‖x̃− µ0‖ =
√

12 + 2.22 = 2.416

‖x̃− µ1‖ =
√

(−2)2 + (−0.8)2 = 2.154

Thus, h1(x̃) = 1 as ‖x̃− µ0‖ > ‖x̃− µ0‖.
2. Suppose that the target variable y is given by y = W TX+ ε, where X ∈ Rd is the input

vector, W is the unknown parameter, and ε is a zero-mean Gaussian random variable
with precision (inverse variance) β. Given a dataset {(Xi, yi), i = 1, . . . , n}, let Ŵ (λ)
denote the estimate of W obtained using regularized least squares, i.e.,

Ŵ (λ) = min
W

1

2

n∑
i=1

(yi −XT
iW )2 +

λ

2
W

T
W.

Answer the following: (2+3 marks)

(a) Is E
(
Ŵ (λ)

)
= W for λ > 0?

(b) Calculate the variance of Ŵ (λ) defined by

Var(Ŵ (λ)) = E
[(
Ŵ (λ)− E(Ŵ (λ))

)(
Ŵ (λ)− E(Ŵ (λ))

)T]
.

Hint: Use the fact that Var(CY ) = CVar(Y )CT, when C is not random.

(c) BONUS (2 marks): Show that the variance of Ŵ (λ) is smaller than Ŵ (0), i.e.,

Var(Ŵ (0))− Ŵ (λ) positive semi-definite.

Answer:

(a)

y = w
T
x+ ε =⇒ Y = AW + E =⇒ E[Y ] = AW

Ŵ (λ) = (A
T
A+ λI)−1A

T
Y

E[Ŵ (λ)] = (A
T
A+ λI)−1A

T
E[Y ]

= (A
T
A+ λI)−1A

T
AW 6= W for λ > 0.



(b) We have V ar(Y ) = E[Y Y
T
]− E[Y ]E[Y

T
]

Also, E[Y ] = AW

E[Y
T
] = W

T
A

T

E[Y ]E[Y
T
] = AWW

T
A

T

E[Y Y
T
] = E[(AW + E)(W

T
A

T
+ E

T
)]

=⇒ E[Y Y
T
] = E[AWW

T
A

T
+ EW

T
A

T
+AWE

T
+ EE

T
]

=⇒ E[Y Y
T
] = AWW

T
A

T
+
I
β

Thus,

V ar(Y ) = AWW
T
A

T
+
I
β
−AWW

T
A

T
=
I
β

Now,

Var(Ŵ (λ)) = V ar(A
T
A+ λI)−1A

T
Y )

= (A
T
A+ λI)−1A

T
V ar(Y )A(A

T
A+ λI)−1

=
1

β
(A

T
A+ λI)−1A

T
A(A

T
A+ λI)−1


