CS5691: Pattern recognition and machine learning Quiz - 2

Course Instructor: Prashanth L. A. Date: Feb-22, 2019 Duration: 40 minutes

Name of the student:

Roll No:

INSTRUCTIONS: For MCQ questions, you do not have to justify the answer. For the rest, provide proper justification for the answers. Please use rough sheets for any calculations *if necessary*. Please **DO NOT** submit the rough sheets. DO NOT use pencil for writing the answers.

I. Multiple Choice Questions

Note: 1 mark for the correct answer. Only one answer is correct. Please write the choice code a, b, c or d in the answer box provided.

- (1) Let $\{X_1, \ldots, X_n\}$ be i.i.d. samples from $\mathbb{N}(\mu, \sigma^2)$, with $\sigma > 0$. Letting $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, which of the following statements is true?
 - (a) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 = \sum_{i=1}^{n} (X_i \mu)^2$.
 - (b) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 \le \sum_{i=1}^{n} (X_i \mu)^2$.
 - (c) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 > \sum_{i=1}^{n} (X_i \mu)^2$.
 - (d) An inequality/equality relating $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2$ and $\sum_{i=1}^{n} (X_i \mu)^2$ does not always hold.

Answer:

- (2) Consider a Bayesian estimation problem, with data $\{X_1, \ldots, X_n\}$ i.i.d. from $\mathbb{N}(\theta, 1)$, and a $\mathbb{N}(0, 1)$ prior. Letting $S_n = \sum_{i=1}^n X_i$, the posterior mean is
 - (a) $\frac{S_n}{n}$

(b) $\frac{S_n}{n+1}$

(c) $\frac{nS_n}{n+1}$

 $(d) \frac{S_n + 1}{n+2}$

Answer:

- (3) Let $X \sim \text{Unif}[0, \theta]$. Then, the maximum likelihood estimate of θ , given i.i.d. samples $\{X_1, \ldots, X_n\}$ is
 - (a) $\sum_{i=1}^{n} \frac{S_n}{n}$.

(b) $\min_{i=1,...,n} X_i$.

(c) $\max_{i=1,...,n} X_i$.

(d) $\frac{1}{2} (\max_{i=1,...,n} X_i - \min_{i=1,...,n} X_i)$.

Answer:

- (4) Suppose that we are trying to fit a linear and 10th degree polynomial to data coming from a cubic function, corrupted by standard Gaussian noise. Let M_1 and M_2 denote the models corresponding to the linear and 10 degree polynomial. Then,
 - (a) $\operatorname{Bias}(M_1) \leq \operatorname{Bias}(M_2)$, $\operatorname{Variance}(M_1) \leq \operatorname{Variance}(M_2)$.
 - (b) $\operatorname{Bias}(M_1) \leq \operatorname{Bias}(M_2)$, $\operatorname{Variance}(M_1) \geq \operatorname{Variance}(M_2)$.
 - (c) $\operatorname{Bias}(M_1) \ge \operatorname{Bias}(M_2)$, $\operatorname{Variance}(M_1) \le \operatorname{Variance}(M_2)$.
 - (d) $\operatorname{Bias}(M_1) \ge \operatorname{Bias}(M_2)$, $\operatorname{Variance}(M_1) \ge \operatorname{Variance}(M_2)$.

Answer:	

- (5) Consider a regression problem, with scalar input $X \in \mathbb{R}$, and target $Y \in \mathbb{R}$. Suppose (X,Y) is bivariate normal with non-zero means, positive variances, and non-zero correlation. Then, the optimal predictor, for the square loss, as a function of X is
 - (a) Quadratic.

(b) Constant.

(c) Linear.

(d) None of the above.

Answer:

II. A problem that requires a detailed solution

(1) Consider a distribution over (X, Y) given by the following assumptions:

$$Y \in \{-1, +1\}, X \in \{0, 1\}^3.$$

$$\mathbb{P}(Y = +1) = a, \mathbb{P}(Y = -1) = 1 - a,$$

$$X|Y = -1 \sim \text{Bern}(\theta_1) \times \text{Bern}(\theta_2) \times \text{Bern}(\theta_3),$$

$$X|Y = +1 \sim \text{Bern}(\tau_1) \times \text{Bern}(\tau_2) \times \text{Bern}(\tau_3).$$

We have 10 training points from the above distribution, given by the table below.

X_1	X_2	X_3	Y
1	0	0	+1
0	1	1	-1
0	1	0	+1
1	1	0	+1
1	1	1	-1
1	0	0	+1
1	0	1	+1
0	0	1	-1
0	1	1	+1
0	0	0	-1

i. Give the ML estimates for $a, \theta_1, \theta_2, \theta_3, \tau_1, \tau_2, \tau_3$.

- (3 marks)
- ii. For all the 8 points in the instance space $\{0,1\}^3$, give the estimate of the posterior probability $\mathbb{P}(Y=+1\mid X)$, and give the prediction that minimises the mis-classification rate (or the Bayes classifier for the zero-one loss), in the form of a table with 8 rows. (2 marks)