CS5691: Pattern recognition and machine learning **Quiz - 2 Solutions** Course Instructor : Prashanth L. A. Date : Feb-26, 2019 Duration : 40 minutes

I. Multiple Choice Questions

- 1. Let $\{X_1, \ldots, X_n\}$ be i.i.d. samples from $\mathbb{N}(\mu, \sigma^2)$, with $\sigma > 0$. Letting $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, which of the following statements is true?

 - (a) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 = \sum_{i=1}^{n} (X_i \mu)^2$. (b) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 \le \sum_{i=1}^{n} (X_i \mu)^2$. (c) $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2 > \sum_{i=1}^{n} (X_i \mu)^2$.

 - (d) An inequality/equality relating $\sum_{i=1}^{n} (X_i \hat{\mu}_n)^2$ and $\sum_{i=1}^{n} (X_i \mu)^2$ does not always hold.

Solution: (b) Observe that $\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} ([X_i - \hat{\mu}_n] + [\hat{\mu}_n - \mu])^2 = \sum_{i=1}^{n} (X_i - \hat{\mu}_n)^2 + \sum_{i=1}^{n} (\hat{\mu}_n - \mu)^2$ (the cross term vanishes),

leading to the claim in part (b).

2. Consider a Bayesian estimation problem, with data $\{X_1, \ldots, X_n\}$ i.i.d. from $\mathbb{N}(\theta, 1)$, and a $\mathbb{N}(0, 1)$ prior. Letting $S_n = \sum_{i=1}^n X_i$, the posterior mean is

(a) $\frac{S_n}{n}$	(b) $\frac{S_n}{n+1}$
(c) $\frac{nS_n}{n+1}$	(d) $\frac{S_n+1}{n+2}$

Solution: (b). Use the expression for posterior mean (derived in the class), subsitute the prior mean/variance values to arrive at the answer.

3. Let $X \sim \text{Unif}[0, \theta]$. Then, the maximum likelihood estimate of θ , given i.i.d. samples $\{X_1, \ldots, X_n\}$ is

(a) $\sum_{i=1}^{n} \frac{S_n}{n}$.	(b) $\min_{i=1,,n} X_i$.		
(c) $\max_{i=1,\ldots,n} X_i$.	(d) $\frac{1}{2} (\max_{i=1,\dots,n} X_i - \min_{i=1,\dots,n} X_i).$		

Solution: (c). The likelihood function is given by

$$L(\theta) = \frac{1}{\theta^n}$$
 for $0 \le X_i \le \theta$, and 0 elsewhere.

The maximizer of $\frac{1}{\theta^n}$ subject to $X_i \leq \theta$ is $\max_i X_i$. The simpler case of one sample, say X_1 , is easy to think about. The uniform density $f_{\theta}(X_1)$, as a function of θ , is zero if $\theta < X_1$, is $\frac{1}{X_1}$ at $\theta = X_1$, and decreases thereafter, i.e., for $\theta > X_1$. Hence, the ML estimate in the one sample case is X_1 .

4. Suppose that we are trying to fit a linear and 10th degree polynomial to data coming from a cubic function, corrupted by standard Gaussian noise. Let M_1 and M_2 denote the models corresponding to the linear and 10 degree polynomial. Then,

```
(a) \operatorname{Bias}(M_1) \leq \operatorname{Bias}(M_2), \operatorname{Variance}(M_1) \leq \operatorname{Variance}(M_2).
(b) \operatorname{Bias}(M_1) \leq \operatorname{Bias}(M_2), \operatorname{Variance}(M_1) \geq \operatorname{Variance}(M_2).
(c) \operatorname{Bias}(M_1) \ge \operatorname{Bias}(M_2), \operatorname{Variance}(M_1) \le \operatorname{Variance}(M_2).
(d) \operatorname{Bias}(M_1) \ge \operatorname{Bias}(M_2), \operatorname{Variance}(M_1) \ge \operatorname{Variance}(M_2).
```

Solution: (c). From the bias-variance tradeoff discussion in class, it is apparent that a linear fit will have a higher bias than a fit using a higher-degree polynomial, while the reverse is true w.r.t. variance, since the training is on a finite dataset.

5. Consider a regression problem, with scalar input $X \in \mathbb{R}$, and target $Y \in \mathbb{R}$. Suppose (X, Y) is bivariate normal with non-zero means, positive variances, and non-zero correlation. Then, the optimal predictor, for the square loss, as a function of X is

(a) Quadratic.

(c) Linear.

(b) Constant.(d) None of the above.

Solution: (c). Recall that $\mathbb{E}(Y \mid X)$ is the optimal predictor for the square loss. Now, when (X, Y) is bivariate normal, with non-zero correlation, then $\mathbb{E}(Y \mid X)$ is a linear function of X (Why?).

II. A problem that requires a detailed solution

1. Consider a distribution over (X, Y) given by the following assumptions:

 $Y \in \{-1, +1\}, X \in \{0, 1\}^3.$

 $\mathbb{P}(Y = +1) = a, \mathbb{P}(Y = -1) = 1 - a,$

 $X|Y = -1 \sim \operatorname{Bern}(\theta_1) \times \operatorname{Bern}(\theta_2) \times \operatorname{Bern}(\theta_3),$

 $X|Y = +1 \sim \operatorname{Bern}(\tau_1) \times \operatorname{Bern}(\tau_2) \times \operatorname{Bern}(\tau_3).$

We have 10 training points from the above distribution, given by the table below.

X_1	X_2	X_3	Y
1	0	0	+1
0	1	1	-1
0	1	0	+1
1	1	0	+1
1	1	1	-1
1	0	0	+1
1	0	1	+1
0	0	1	-1
0	1	1	+1
0	0	0	-1

- (a) Give the ML estimates for $a, \theta_1, \theta_2, \theta_3, \tau_1, \tau_2, \tau_3$.
- (b) For all the 8 points in the instance space $\{0, 1\}^3$, give the estimate of the posterior probability $\mathbb{P}(Y = +1 \mid X)$, and give the prediction that minimises the mis-classification rate (or the Bayes classifier for the zero-one loss), in the form of a table with 8 rows. (2 marks)

Solution: The ML estimate of a Bernoulli parameter p from n samples is simply $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Therefore the ML parameters are given by:

$$\widehat{a} = \frac{6}{10},$$

$$\widehat{\theta}_1 = \frac{1}{4}, \qquad \widehat{\theta}_2 = \frac{2}{4}, \qquad \widehat{\theta}_3 = \frac{3}{4},$$

$$\widehat{\tau}_1 = \frac{4}{6}, \qquad \widehat{\tau}_2 = \frac{3}{6}, \qquad \widehat{\tau}_3 = \frac{2}{6}$$

The table of posterior probabilities, and Bayes classifier's prediction is given by

X_1	X_2	X_3	P(X Y = -1)	P(X Y = +1)	P(Y = +1 X)	$h^*(X)$
0	0	0	$\frac{3}{32}$	$\frac{1}{9}$	0.64	+1
0	0	1	$\frac{9}{32}$	$\frac{1}{18}$	0.22	-1
0	1	0	$\frac{3}{32}$	$\frac{1}{9}$	0.64	+1
0	1	1	$\frac{9}{32}$	$\frac{1}{18}$	0.22	-1
1	0	0	$\frac{1}{32}$	$\frac{2}{9}$	0.914	+1
1	0	1	$\frac{3}{32}$	$\frac{1}{9}$	0.64	+1
1	1	0	$\frac{1}{32}$	$\frac{2}{9}$	0.914	+1
1	1	1	$\frac{3}{32}$	$\frac{1}{9}$	0.64	+1

(3 marks)