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I. Multiple Choice Questions

1. Let {X1, . . . , Xn} be i.i.d. samples from N(µ, σ2), with σ > 0. Letting µ̂n = 1
n

∑n
i=1Xi. Then, which of the

following statements is true?

(a)
∑n
i=1(Xi − µ̂n)

2 =
∑n
i=1(Xi − µ)

2.
(b)

∑n
i=1(Xi − µ̂n)

2 ≤
∑n
i=1(Xi − µ)

2.
(c)

∑n
i=1(Xi − µ̂n)

2 >
∑n
i=1(Xi − µ)

2.
(d) An inequality/equality relating

∑n
i=1(Xi − µ̂n)

2 and
∑n
i=1(Xi − µ)

2 does not always hold.

Solution: (b)
Observe that
n∑
i=1

(Xi − µ)2 =

n∑
i=1

([Xi − µ̂n] + [µ̂n − µ])2 =

n∑
i=1

(Xi − µ̂n)2 +
n∑
i=1

(µ̂n − µ)2(the cross term vanishes),

leading to the claim in part (b).

2. Consider a Bayesian estimation problem, with data {X1, . . . , Xn} i.i.d. from N(θ, 1), and a N(0, 1) prior. Letting
Sn =

∑n
i=1Xi, the posterior mean is

(a)
Sn
n

(b)
Sn
n+ 1

(c)
nSn
n+ 1

(d)
Sn + 1

n+ 2

Solution: (b). Use the expression for posterior mean (derived in the class), subsitute the prior mean/variance
values to arrive at the answer.

3. Let X ∼ Unif[0, θ]. Then, the maximum likelihood estimate of θ, given i.i.d. samples {X1, . . . , Xn} is

(a)
∑n
i=1

Sn
n

. (b) mini=1,...,nXi.
(c) maxi=1,...,nXi. (d) 1

2
(maxi=1,...,nXi −mini=1,...,nXi).

Solution: (c). The likelihood function is given by

L(θ) =
1

θn
for 0 ≤ Xi ≤ θ, and 0 elsewhere.

The maximizer of 1
θn

subject to Xi ≤ θ is maxiXi. The simpler case of one sample, say X1, is easy to think
about. The uniform density fθ(X1), as a function of θ, is zero if θ < X1, is 1

X1
at θ = X1, and decreases

thereafter, i.e., for θ > X1. Hence, the ML estimate in the one sample case is X1.

4. Suppose that we are trying to fit a linear and 10th degree polynomial to data coming from a cubic function, corrupted
by standard Gaussian noise. LetM1 andM2 denote the models corresponding to the linear and 10 degree polynomial.
Then,

(a) Bias(M1) ≤ Bias(M2), Variance(M1) ≤ Variance(M2).
(b) Bias(M1) ≤ Bias(M2), Variance(M1) ≥ Variance(M2).
(c) Bias(M1) ≥ Bias(M2), Variance(M1) ≤ Variance(M2).
(d) Bias(M1) ≥ Bias(M2), Variance(M1) ≥ Variance(M2).

Solution: (c). From the bias-variance tradeoff discussion in class, it is apparent that a linear fit will have a higher
bias than a fit using a higher-degree polynomial, while the reverse is true w.r.t. variance, since the training is on
a finite dataset.



5. Consider a regression problem, with scalar input X ∈ R, and target Y ∈ R. Suppose (X,Y ) is bivariate normal
with non-zero means, positive variances, and non-zero correlation. Then, the optimal predictor, for the square loss, as
a function of X is

(a) Quadratic. (b) Constant.
(c) Linear. (d) None of the above.

Solution: (c). Recall that E (Y | X) is the optimal predictor for the square loss. Now, when (X,Y ) is bivariate
normal, with non-zero correlation, then E (Y | X) is a linear function of X (Why?).

II. A problem that requires a detailed solution
1. Consider a distribution over (X,Y ) given by the following assumptions:
Y ∈ {−1,+1}, X ∈ {0, 1}3.
P (Y = +1) = a,P (Y = −1) = 1− a,
X|Y = −1 ∼ Bern(θ1)× Bern(θ2)× Bern(θ3),
X|Y = +1 ∼ Bern(τ1)× Bern(τ2)× Bern(τ3).
We have 10 training points from the above distribution, given by the table below.

X1 X2 X3 Y

1 0 0 +1

0 1 1 −1
0 1 0 +1

1 1 0 +1

1 1 1 −1
1 0 0 +1

1 0 1 +1

0 0 1 −1
0 1 1 +1

0 0 0 −1

(a) Give the ML estimates for a, θ1, θ2, θ3, τ1, τ2, τ3. (3 marks)
(b) For all the 8 points in the instance space {0, 1}3, give the estimate of the posterior probability P (Y = +1 | X),

and give the prediction that minimises the mis-classification rate (or the Bayes classifier for the zero-one loss),
in the form of a table with 8 rows. (2 marks)

Solution: The ML estimate of a Bernoulli parameter p from n samples is simply p̂ = 1
n

∑n
i=1 xi. Therefore

the ML parameters are given by:

â =
6

10
,

θ̂1 =
1

4
, θ̂2 =

2

4
, θ̂3 =

3

4
,

τ̂1 =
4

6
, τ̂2 =

3

6
, τ̂3 =

2

6
.

The table of posterior probabilities, and Bayes classifier’s prediction is given by

X1 X2 X3 P (X|Y = −1) P (X|Y = +1) P (Y = +1|X) h∗(X)

0 0 0 3
32

1
9

0.64 +1

0 0 1 9
32

1
18

0.22 −1
0 1 0 3

32
1
9

0.64 +1

0 1 1 9
32

1
18

0.22 −1
1 0 0 1

32
2
9

0.914 +1

1 0 1 3
32

1
9

0.64 +1

1 1 0 1
32

2
9

0.914 +1

1 1 1 3
32

1
9

0.64 +1


