CS5691: Pattern recognition and machine learning Quiz - 3 Course Instructor : Prashanth L. A. Date : Mar-22, 2019 Duration : 40 minutes

Name of the student : Roll No :

INSTRUCTIONS: For short answer questions, you do not have to justify the answer. For the rest, provide proper justification for the answers. Please use rough sheets for any calculations *if necessary*. Please **DO NOT** submit the rough sheets. DO NOT use pencil for writing the answers.

I. Short answer questions

1. Consider a two-class classification problem in a three-dimensional space, where the classes are linearly separable. Suppose the optimal separating hyperplane, i.e., one with highest margin, is given by

$$2x_1 + x_2 + x_3 - 3 = 0.$$

For each of the following training examples, identify the class label, and whether it is a support vector or not: $(\frac{1}{2} \text{ mark for each table entry})$

example class label	support vector or not
(1,1,1) $ $	
$\left \begin{array}{c} (\frac{1}{2},1,0) \end{array} \right $	
(1,1,2)	

Solution:			
	Example	Class Label	SVM or Not
	(1,1,1)	+1	yes
	(0.5,1,0)	-1	yes
	(1,1,2)	+1	No

- 2. Consider a classification dataset with points $x_1 = -1, x_2 = 1, x_3 = 100$, and corresponding class labels $y_1 = -1, y_2 = +1, y_3 = +1$. Let $w_1 = 0$, and $w_2 = 1$. Let $L_1(w)$ and $L_2(w)$ denote the square-loss, and log-loss, respectively, for any $w \in \mathbb{R}$. Recall that square-loss is employed in linear regression, and log-loss (or cross-entropy loss) in logistic regression. Which of the following statements is true? (1 mark)
 - (a) $L_1(w_1) \le L_1(w_2), \quad L_2(w_1) \le L_2(w_2).$
 - (b) $L_1(w_1) \le L_1(w_2), \quad L_2(w_1) \ge L_2(w_2).$
 - (c) $L_1(w_1) \ge L_1(w_2), \quad L_2(w_1) \le L_2(w_2).$
 - (d) $L_1(w_1) \ge L_1(w_2), \quad L_2(w_1) \ge L_2(w_2).$

Answer: **b**

3. Consider the optimization problem for finding the maximum margin separating hyperplane, assuming that the classes are linearly separable:

$$\min_{W \in \mathbb{R}^d} W^{\mathsf{T}} W \quad \text{subject to } y_i \left(W^{\mathsf{T}} X_i + b \right) \ge 1, i = 1, \dots, n, \tag{1}$$

where $\{(X_i, y_i), i = 1, ..., n\}$ is the training dataset. Consider the following variant of the problem in (1):

$$\min_{W \in \mathbb{R}^d} W^{\mathsf{T}} W \quad \text{subject to } y_i \left(W^{\mathsf{T}} X_i + b \right) \ge 100, i = 1, \dots, n.$$
(2)

State whether the optimal hyperplane found by solving (1) is the same as that obtained by solving (2). (1 mark)

Answer: **YES**

4. Suppose we collect data about the number of hours spent per week by students of CS5691, and whether they passed or not. Let $\{(x_i, y_i), i = 1, ..., 86\}$ denote the dataset, where x_i is the hours spent by student *i*, and y_i is a boolean indicating whether the student passed or not. We perform logistic regression on this dataset, and obtain the following output: weight w = 1.5, and b = -4.

Using the logistic regression model, what is the probability that a student who studies 2 hours per week, passes the quiz? (1 mark)

Answer:

Solution:

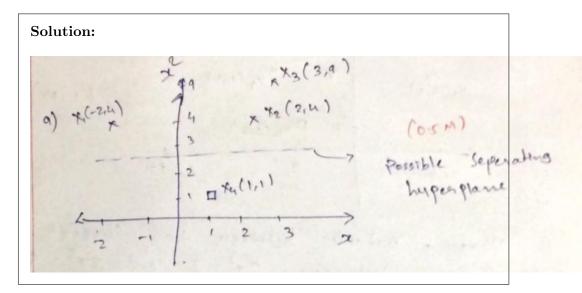
$$\begin{split} & w = 1.5 \ b = -4 \ x = 2 \\ & w^T * X + b = 1.5 * 2 - 4 = 1 \\ & \sigma(w^T * x + b) = \sigma(-1) = \frac{1}{1 + e^{-(-1)}} = \frac{1}{1 + e} \end{split}$$

II. A problem that requires a detailed solution

1. Consider a two-class one-dimensional classification dataset with points $x_1 = -2, x_2 = 2, x_3 = 3$ having class label -1, and $x_4 = 1$ with class label +1.

Answer the following:

- (a) Is the data linearly separable? $(\frac{1}{2} \text{ mark})$ Answer: **NO**
- (b) Consider the transformation $\phi(x) = (x, x^2)$. Form a two-dimensional dataset with inputs transformed using ϕ .
 - (a) Show that the transformed problem is linearly separable. $(\frac{1}{2} \text{ mark})$



(b) Find the maximum margin separating hyperplane in this transformed problem, either by solving the SVM optimization problem using KKT conditions, or a geometric argument. $(1\frac{1}{2} \text{ marks})$

Solution: from geometry we can see y = 2.5 is the separating Hyper plane Hyperplane is $y = w^{*T}x + b$ Let $w^* = [\alpha, \beta], then$ $- 2\alpha + 4\beta + b^* = -1$ $2\alpha + 4\beta + b^* = -1$ $\alpha + \beta + b^* = 1$ Solving above three equation we get $\alpha = 0, \beta = \frac{-2}{3}, b^* = \frac{5}{3}$ $w^* = [0, \frac{-2}{3}], b^* = \frac{5}{3}$ $y = \frac{-2}{3}x^2 + \frac{5}{3}$

(c) What is the margin of the optimal hyperplane obtained above? $(\frac{1}{2} \text{ mark})$

Solution: margin $= \frac{2}{||w^*||} = \frac{2}{\frac{2}{3}} = 3$

(c) In the part above, suppose the transformation is $\hat{\phi}(x) = (2x, 2x^2)$. Compare the margin resulting from $\hat{\phi}$ to that obtained using ϕ . (1 mark)

