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I. Short answer questions

1. Consider the dataset {(1, 1), (2, 2), (3, 3), (4, 4)}. Use the K-means clustering algorithm,
initialized with the first two data points as the cluster centers, and with K = 2. Provide
the mapping of the data points to the clusters, and the cluster centers. (1 mark)

Solution: First cluster: {(1, 1), (2, 2)} with center (1.5, 1.5), and second cluster:
{(3, 3), (4, 4)} with center (3.5, 3.5).

Alternate solution:
First cluster: {(1, 1)} , and second cluster: {(2, 2), (3, 3), (4, 4)}.

2. Recall that, given a dataset {(xi, yi), i = 1, . . . , n}, the support vector regression method
would solve the following optimization problem: Letting ξ = (ξ1, . . . , ξn), and ξ′ =
(ξ′1, . . . , ξ

′
n),

min
w,b,ξ,ξ′

wTw + C

(
n∑

i=1

ξi + ξ′i

)
(1)

subject to

yi − wTxi − b ≤ ε+ ξi, i = 1, . . . , n (2)

wTxi + b− yi ≤ ε+ ξ′i, i = 1, . . . , n (3)

ξi ≥ 0, ξ′i ≥ 0, i = 1, . . . , n. (4)

Let αi and α′
i be the Lagrange multipliers associated with the constraints (2) and

(3), respectively. From the solution to the dual optimization problem, for each of
the following training examples, identify whether the Lagrange multipliers αi, α

′
i both

vanish or if one of them vanishes or if none vanish: (1 mark for each table entry)

Solution:

example αi, α
′
i

|yi − wTxi − b| ≥ ε αiα
′
i = 0

|yi − wTxi − b| < ε αi = α′
i = 0

3. Consider a specific three layer feedforward network with sigmoidal activation functions
for all the hidden nodes. Can we construct another three layer feedforward network
(with same architecture), where the hidden nodes use the hyperbolic tangent as the
activation function such that the two networks compute the same function? (12 mark)

Answer: Yes.



4. Consider a feedforward neural network with a linear activation function. Can a poly-
nomial of degree two be represented by such a network? (1 mark)

Answer: No.

5. For the case of a mixture of Bernoulli distributions, suppose that EM algorithm is
initialized such that the mean vector for each component distribution is the same. Does
the EM algorithm converge? If yes, provide an estimate of the number of iterations it
takes to converge. (1 mark)

Answer: Yes, and one iteration.

II. A problem that requires a detailed solution

1. Consider a dataset {x1, . . . ,xn}, with xi = (xi,1, . . . , xi,d)T and xi,j ∈ {0, 1}. Consider
a mixture of two Bernoulli distributions:

f(xi) = λ1f1(xi) + λ2f2(xi),

where fj is the mass function of a d-vector of Bernoulli r.v.s with parameter θj , j = 1, 2.
To elaborate, each xi is drawn, w.p. λj , from a vector of Bernoulli r.v.s with mean
vector θj = (µj,1, . . . , µj,d)T.

Answer the following:

(a) Write down the expression for the log-likelihood log f(X | θ, λ) of the data, where
θ = (θ1, θ2), X = (x1, . . . ,xn), and λ = (λ1, λ2). (1 mark)

(b) Introduce the hidden variables zi,j that indicate whether data point xi was drawn
from component fj or not, for i = 1, . . . , n and j = 1, 2. Let zi = (zi,1, zi,2),
i = 1, . . . , n. Write the conditional distribution of zi given λ, and the conditional
distribution of xi, given zi,λ,θ. Use these quantities to derive the expression for
the likelihood of the data, and hidden variables, given λ and θ. (1 mark)

(c) Apply the EM algorithm to the mixture of Bernoulli distributions, specified above.
In particular, show the E and M steps in detail. (2.5 marks)

Solution: See Section 9.3.3 of Bishop’s book.


