
 

Eigenvalues and eigenvectors

Ax Xx
Aa stretch x or

a
shrink x

but no change in

direction

Case 1 0 Ax O

XEN CA

Examples Projection matrix p

Project onto a plane

Px x for x in plane

A L is the eigenvalue
x is the eigenvector



Be 0 Hk perpendicular to the plane
X O and x is the eigenvector

Permutation matrix

fo
Ba x for x f
Bx x for x C

Finding the eigenvalues

Axe Xx
i e FA XI x so

i e A XI is singular



ie det CA AI O

characteristic polynomial of A
which is of degree n

Ca d Cann D

n roots eigenvalues
For a given 1 NCA AI has to

be found to obtain the eigenvectors

Procedure to use for finding NCA AD
Elimination

Examplet f
del CA XI O



F 6 8 0

ditch 6 1,72 8

Trace sum of eigenvalues
Determinant product a

Eigenvalues are 4 4 12 2

A KI x
I I

A 2I
xn ftI 1

Letting B Qf
B 13 I A



Ax Bt3I x txt 3k
c 3 x

Eigen recs of Bs eigenvects of A
why

Not
Tf Axe X x and Bx dzx

then C B x E 1172
T

does not always hold since

x's need not be the same

for A B

Symmetric matrices

real eigenvalues

An example where eigenvalues aren'treal



A a 9 I rotate by 90

det CA AI It I

X i de i

An example where we don't get
two independent eigenvecis

A 3D
X Xz 3

CA AI 8 o

x f is a eigenvec
there is no other indep eigenvec



8

Similarity diagonalization

Suppose A has n linearly
independent eigenvectors x an

s
14

then 5 AS

and X An are the eigenvaluesof A



Proofs

F
Aff I

L y

fi

t
SA defined tobe

so AS SA N

or 5 AS A S invertible wayB



Claim If A An are distinct

then their eigenvectors x an

are linearly independent
Proof for n 2

o

C X t 992 0

Acc x Ex D O

C X X t CzXz712 0

C C X 22774 0

X I 42 X to C 0

Similarly Cz O

So x 223 is a linearly indep set

HI Extend to the general core in
n dimensions



Remarks

A 5 5

S is not unique

x is an eigenvec CX is an

eigenrec HER

So each cot of S can be scaled

to produce a new S

A S as
1

Suppose Coc 1 of S is g
Gl l of SA X y
Gcl of AS Ay
Given AE Sa

Age X y y is aneigenvecX Tsaneengenval



Powers of A
Suppose X is an eigenvalue a

an eigenvec of A

A2x Alex tax the

Suppose 5 AS A

is 5 A'see it

AS C5 AS IT

works for a general K i e

5 Aks Ak
Not all matrices are diagonalizable

A Coo



Diagonalizability dependeon enough eigenvecs

Invertibility non Zero eigenvals

EXAMPLE

Fibonacci sequence
0 1,1 43,5

Eez FeatFK
what is Foo

Fetz Flee 1 Fk

Fk Feel

the FEI Uktf f Uk



Start with Uo

Uo u as 2

U Ak Uo is a solution to

Uke AUK
Suppose A has n independent eigenrecs

Uo C X t Catz t f Gkn

Allo Cid X Cadiz t
tcndpcnue

AKUo C.cl54t tCndfxn

Back to Fibonacci

A f f path x l

X Hrs 42 1 B
2 2



Uk C Xix t Cz tf xz
Uo Fo e lo C X t Cz 712

Need to find cigcnvecsxc.az of A

AC AI
ft x

x Y ai f
CA HIT fat f to
E C'of Ers I



E Is tf Is first
negligible contribution

for large K

Foo I 4.6181100

Spectral theorem

A is a real symmetric matrix

eigenvalues of d are real

Eigenveis corresponding to different eigenvalues
are independent
A is orthogonally dragonalizable

if A On A QT where QTQ I



fit

Example A 12 12
Eigenvalues 3,2

x

fly Xz

9 1 ri f.gg
Q Cal check

tQn_Iaaoicr.s

If

A



Singular value decomposition

Every matrix cannot be diagonalized

realBut any mxn matrix A

Can be written as

T

A QE Qs
where Q Mx m matrix

Q2 1 nxn matrix

Q Q2 orthogonal
Do 8 where



D

fi

why does this decomposition
hold for any matrix A

A is m xn

ATA is nx n

ATA is symmetric
and real

F a basis of orthonormal

eigenvectors say fX da



corresponding to eigenvalues 13

ATA x Xi Xi ist n

1174112 1 Xi Xj it j
So

CATA Xi Xi i Xi Xi

Xi
ATA sci Xi FATAH Txi

Xi ATA Xi
Ati TAXI

HA till
70



So Xi 70

Next stop ri e

Orderthet
Xi Xr tri An

X O 170 drei 71 0

Let of Tai and

Li I Axi i I r

ri Cy ERM

Lill Arik hi
ri



Li Jj Adi Aaj

I xfAtAxj
99
I XiTXj Xj
ring

xFxj O

Fri
So L L is a orthonormal

set of vectors

Extend this set to a basis

make it orthonormal



Let y ym3 be that set

Qi fi Ym

Qe 4

QI A Q2

Hair



E
ij LifAxp

If jar Yj fjAxj
yFCAxj Lift

r Lif

e

i

Tf j r then Gee next
page



I Aaj Il X j
0

So Axj O

y Aaj O

e
fo 8

OF A Q2

a safe A



remade

A At Q SEQ
T

So eigenvectors of AAT

go into Q

and

Ata Q EE QE

implying eigenvectors of
ATA go into Q2

EXAMPLES

A C re



Find SVD of A

is A diagonalizable
No A has if eigenvalue

repeated twice

A RI oof
So lo is an eigenvector of A

there aren't any more

independent ones

Finding the SVD

Gee next page



ATA fz
Eigenvalues 4 I

9 2 2 1

E L 3
Finding eigenvectors of ATA

ATA 4 I
r I

So l
is an eigenvector of
ATA



a t.li

ATA I Fill
this

So f is another eigenvector
l

of ATA

xi tr.IE

so QE fsf

re



ME
y A x FLEAM

we obtain

Li f titty

Q Y

Check A Q S QI



Positive definiteness

consider

Ffa g 7 2 Get g
2
y sing of

f Cx g
2
2
t 4xyty2

At a stationary point the

first derivatives vanish

4fx g 3 70
Fj 4Hty goosy

sing O

2 text 48 0

Ign 4 4 0



So x y 0,0 is a

stationary point for both
F and f

Question whether 10,0 is a

minimalmaximal saddle

Answer Find the second derivatives
at o.o

If u II
2 2

ZI e k II
2x 2g 2x 2g
IF If2

2g 2y2



So F and f behave identically
near origin i.e
F haha minimum Tff f has a minimum

Remarki
Every quadratic ax't 2bxgtcg2
has a stationary point at 6,0

y

f x'y2

minima

A function f that vanishes at 10,07
4 is strictly positive at other



by

points is
a

positive definite

Question what conditions on

a b C ensure fzax42bx
ytcglisp.la

Necessary conditions

if f 70 then a off at
E If f 20 then c Offookatrate

at 10,17

But as 0 C 0 Is not enough

to ensure f 20

e g f x2 long f y2



Trick Complete the square

f a att 2b xy Cy
a fat bag 2t c bad y2

IT If f 70 then

ac b2

So f ax2t2bxytcy2 is p d

if and only if
a O and a b2

See next page



Any function Ffx y has a

minimum at a point Cx y
where 21 0 II

2x 2g
IF 30 and
2

2

e
ie

H
i

Note Quadratic part of F
III knht.LI yGHtEIfgkis



y g

Remaryka

Tf aEb then

f is positive semi definite
if a 0

negative semi definite
if aco

Saddle point if accb2

Connection to linear

algebra
ax'tabagecy C Dfg 4 g



U x yJT

ax2t2bxgtcy2 is vtAu
where A fab

b

UTA u in Rn

c
ing

7 Aig Xi Xj



U X an T

f fo a 742 2922,921 tannxf

At u 0 07 f 0

So Co o is a stationary
point

Next question is to check if
f has a minimalmaximalsaddle

at origin

Exampts
f 2x't 4xytg2

A Cz
safdie

origin



fa 2x g
A pi

saddle

A is 3 3

f 22,2 2x 92 2 22 2 13 215

e
Ii b

Check that f has a minimum

at origin



De Matrix A is P d

if vTAu o HofR

Test for positive definiteness

A babe is p.la if
a 0 ac b o

both eigenvalues are 20

Fact
Each of the following tests are

both necessary f Sufficient for pnd



of

Ut Aa O Hu

AU eigenvalues of A are 70

All the pivots without

row exchanges are 70



fbggt ax2 2bxgtcg2

acx.be g
2
4 Ian y2

f is p d Tf f 20

H Ca g I 6,0 Oatco

f is p d

Ate

a o ad ac b2

Recall the example
f Gig 2 2 1 4xyty



This function has a saddle

at origin because accb2

brief remark on saddle

f _2xy and feat y2
ac b 1 for both

connection to linear algebra

TA ax42bxgecf2Take
Ca Bfa Effy

face 5g dig di Xjin 112



real symmetric
A matrix A is positive definite

if vtAo 20 HOER oto

or

Ii Au eigenvalues of A
are 20

or

Iii Aa upper left submatrices
have positive determinant

or

V All the pivots are o



Suppose i holds

A x Xx

xTAx xTXx 4112112

xto ITAR O

X O ie holds

Suppose Iii holds

Using spectral theorem we

obtain a orthonormal boris

of eigenvectors
Let fx an be that basis



Any X X C x t than

Ax 449 t than

xTAx faxit then
x 9421 t thank

e t t than
0 since Xi 30 Hi

so holds

Brief notes on Rib

In 2 2 case a C b2
det CA O



A C I
consider I

ac b but

A I not p d

in fact A is
negativedefinite

condition fli requires

Ai Cai Ait
A

Ca
a

Ai A



det Ai o ie f n

On condition Civ

consider A
Cho I I

L DLT

sc

to
c Ig then



i C I 3

xTAx XT LD Ex

fix TD Ex

Yu ETTEN ET
t Iz w 20

So in this example Liu CD



Checki
ax't 2bayecy

a fat Kaf 2tacaIy2
a dead are the pivots

for the 2 2 matrix A



Principal Component Analysis

Feature selection

Start with as many features as you
can collect then find a good
subset of features

Principal Component Analysis PCA

Idf project onto a lower dimensional spare
such that i reconstruction error is minimized

I
ii maximize the variance of projected data

Gin 99 xn3 Xi CRd

God Project to a m dimensional subspace

m input parameter

Let B fu um be a orthonormal
basis for a m dimensional subspace

Extend B to a basis for Rd U um Uma Ha



Any vector X CKd can be written as
d

X E Ljuj where 2j xuj
J 1

In particular for T l n

Xi
g
xfuj uj

Approximate Xi by 74 as follows

Ie 2ijujtf.fmPjuj
Find Lij Pj to minimize

J In Hai 112

t I lxiuj 2ijlujtg.fm lxiTuj pj uj

In E Hiu Ii t
m
fxiuj Pj

D 21 xituj 2ij O 2ij xfuj
J2ij

o th Hui B7 0 BE Exigg

J Pj Ituj



So I us ujtg.SE uj
ujxi

xT
g m

CxiTuj ITuj
ujHxi

xill2 Edm Xi ITU

th E EE Chi ITUD2
In Ki x'TujIAxi ITH

In Edm EE Uj ki
I Hi Itu

Edm uE In EGi Illa Bai
11
C

d

J't E uf Ca
Jim 11

Consider a simpler Case

muin
at Cu s t Utu I



Lagrangian Lcu He utcut All utu

Da Liu 3 0 u Xu

so UTC U X

C is real symmetric
all eigenvalues are real it
3 a orthonormal basis of eigenvectors

d
To minimize J E u'jCuj

J2Mtl

choose Um Usa to be d m eigenvector

corresponding to d m least eigenvalues

Ui Um correspond to the top m eigenvalues

of C

PCA ax maximizing Variance

Consider projection onto a line given by a
unit vector u

For an Xi the projection onto line along u is

Cafu U



Mean is ITU U

Variance is Cafu ITU

Sum over all points to obtain

In Cafu Itu 2

t E UT ai Itai ITU

UTC u where In 724 5K IF

so Max UTC U s t UTU L
U

is achieved by the eigenvector corresponding

to the highest eigenvalue

The logic Can be extended to the case when
m 1

For instance we need 4,4 S.tl 4tfKuzlkl UTUE0

projected variance is maximized

It can be shown that picking the eigenvectors

corresponding to hop 2 eigenvalues maximizes
projected variance so on



In general to perform PCA

pick the top m eigenvalues find the

corresponding eigenvectors fee Um

U principal directions

projected values Principal components

PCA in higher dimensions
x xn Xi fled

173 n

PCA requires calculating the eigenvectors of
C In Hi I Cxi IT

Goal Formulate the problem alternatively as

finding the eigenvectors of a mxn matrix

Notice that rank c E n

which implies d n eigenvalues are zero

Thug it is not necessary to find d n eigenvectors

Let A C In ATA



Let Ui be an eigenvector of C corresponding to

eigenvalue Xi 30 six

napclaim Xi is an eigenvalue of 1

Proof Xi Ani A Xi Ui
A ft ATA w

ti Alli In A ATC Au 3

So Xi is an eigenvalue of InAAT

It is enough to find eigenvectors of InAAT

because

Suppose Vi is an eigenvector of In AAT Then

In AAT 4 XiUi

In ATA ATU Xi Atu

implying Atu in an eigenvector of IATA
C

PCA as whitening transform



Features fix xn normalized centered
ie Zero mean I unit variance

Goal Make the features uncorrelated

Let X 7 2 7 Xd be the eigenvalues of C

with corresponding eigenvectors Ui Ud

a I
0

14 Ya

Finding eigenvectors requires solving
8 8 a

Feature transformation e

2in A
2 Ttx

Covariance of 2 2n

I In Zi

In it x xf Jfk



ik Tfc J Ih
ik J n Ik
I


