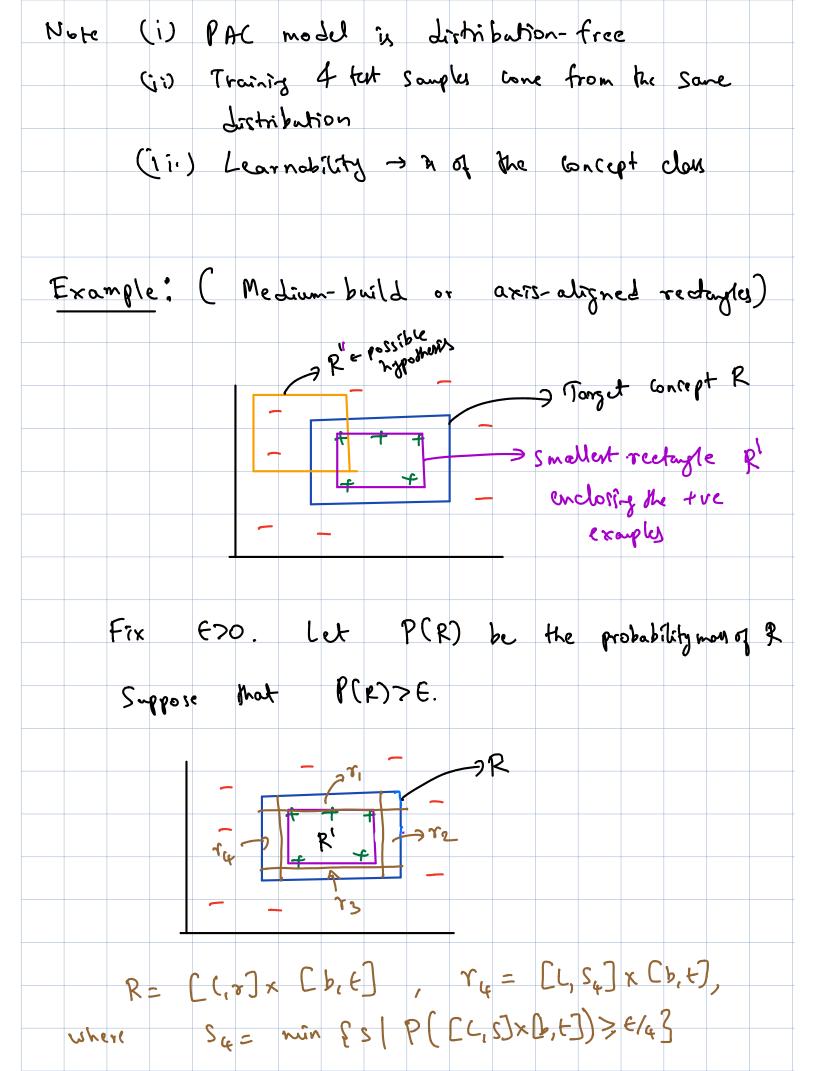
PAC - Learning
(Probably Approximately General)
(Probably Approximately General)
The PAC Learning model:
St input space (set of all feature vectors)
Y: set of label e.g., f0,13
A concept c:
$$\chi \rightarrow \chi$$

Concept clouble: collection of concepts
Suppose the inputs/examples are gicked in an iid foshion
Uping some distribution D.
The learning problem:
Chriven H: hypo thous set (not necessarily = E)
A data $S = \{\chi_{1}, -..., \chi_{m}\} \in 11d$ units D,
(abds = $\{c(\chi_{1}), -..., c(\chi_{m})3,$
the goal n to minimize the gue ralization error,
i.e., $R(h) = P(h(\chi) \pm c(\chi)) = E(1(hio)+c(\chi))$
Siven hypo thous he H-

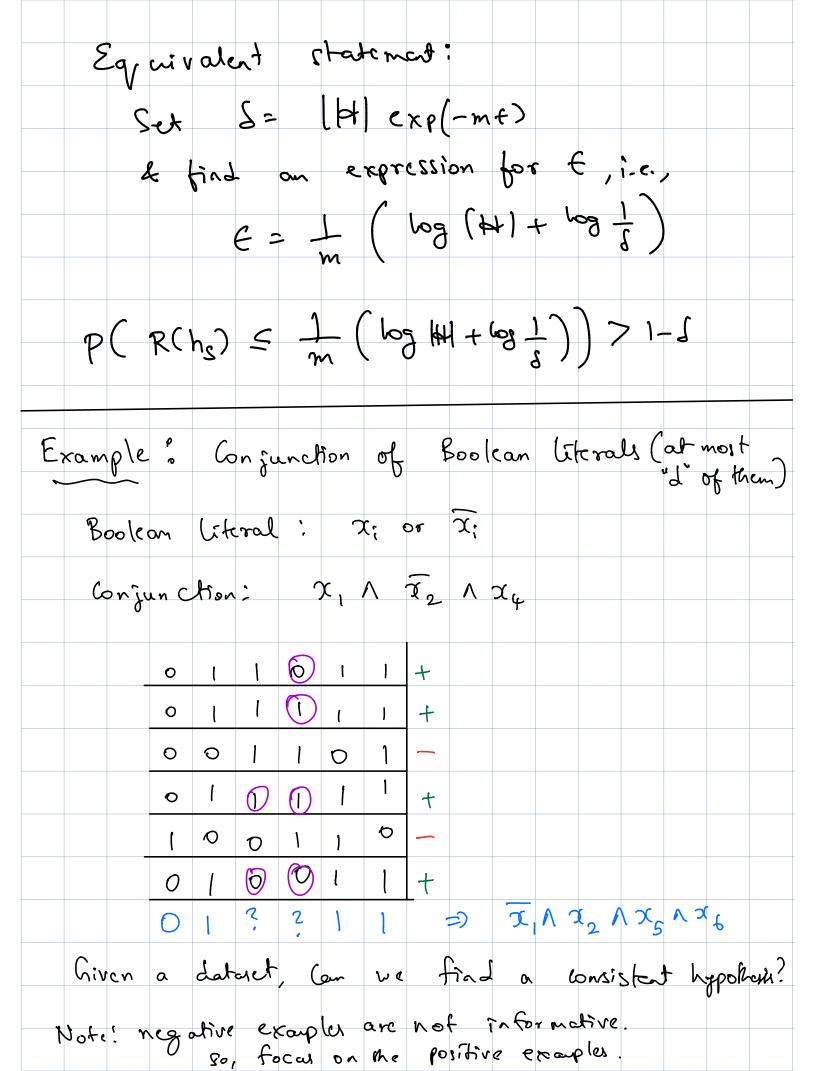
Empirical error: $\hat{R}_{c}(h) = \int \sum_{i=1}^{\infty} 1(h(x_{i}) \neq c(x_{i}))$ By linearity of correctation, $E\left[\hat{R}_{s}(h)\right] = \frac{1}{2} \sum_{m}^{\infty} E\left(I\left(h(x_{i}) \neq cG_{i}\right)\right)$ $Fixed = \frac{1}{m} \sum_{i=1}^{\infty} E\left(I\left(h(x) \neq c(x)\right)\right)$ (not rombon) $= E(I(h(x) \neq ((x)))$ = R(h)PAC-learning! A concept class I is PAC-learnable if there exists an algorithm of and a polynomial function poly (.,.,.) such that HEZO, SZO, for all distributions D on X, and a target concept CED, the following holds for any m? poly (=, f, sizerc), d) $P_{S \sim D^{m}}(R(h_{S}(A)) \leq \epsilon) \geq 1 - \delta.$



If p' has one side in each o;, then its croop (which is the prob. of region not covered by P') is ct. Now, If P(R')>E, then P' nisses at least one of the regions. Given data S= f x, ___ X_m3, let Rs be the smallest reltangle enclosing positive excepts. Then, $P(R(R_s) > \epsilon) \leq P(\bigcup_{i=1}^{4} \{R_s \cap r_i = \phi\})$ union $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} P(\{R_s \cap T\} = \emptyset\})$ $\frac{1}{(5me)} = \frac{1}{2} + \frac{1}{2} +$ $(med_{rse}^{2}) \rightarrow \leq 4 \exp\left(-\frac{mf}{4}\right)$ To ensure $P(R(R_S) \ge E) \le S$, it is enough if we have $4\exp\left(-\frac{mE}{G}\right) \leq S$ $m \ge \frac{4}{5} \log\left(\frac{4}{5}\right)$

Thus, $\forall F > 0$, $o \in S \subset I$, $if m \ge \frac{1}{F}$ $bg(\frac{F}{5})$, $P(R(R_s)>e) < S.$ then on $P(R(R) \leq E) \geq 1-S$ Guarantees for finite hypothesis sets - consistent case Mearcon's Let It be a finite set of functions h: 8-J. Let A be an algorithm that for ony target concept CEH, and training datas, returns a "consistent" hypothesis hs, i.e., $\text{ cupinical cross } \mathcal{P}_{s}(h_{s}) = \frac{1}{m} \sum_{i=1}^{S} 1(h_{s}(x_{i}) \neq c(x_{i})) = 0$ Thun, for any E,520, P(R(hs) SE) > 1-S holds if $m \ge \frac{1}{E} \left(\log |H| + \log \frac{1}{S} \right).$ Proof : Fitter Uniform Convergence. Note: hs is random as it depends on Sifi--ing we bound the probability that some hEA is consistent and has R(h) > E Let HE= { hEH | B(h)>E]

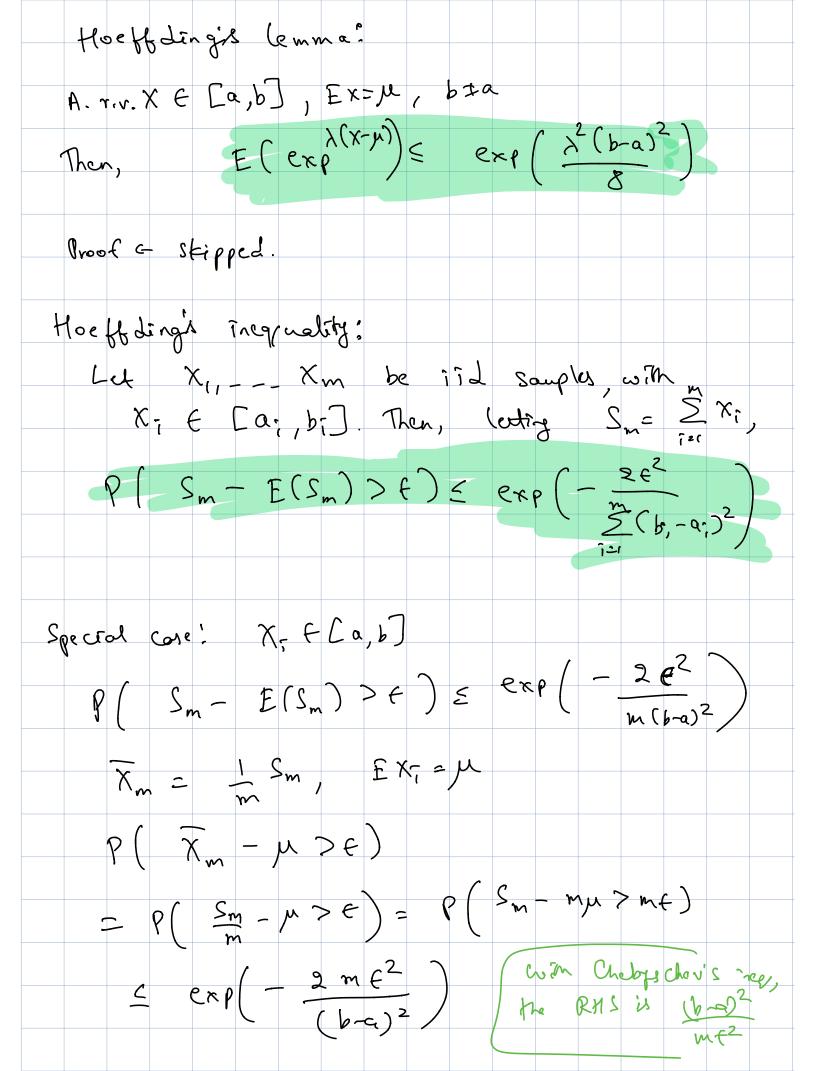
Given dataset S, $P\left(\hat{R}_{s}(h) \rightarrow O\right) \leq (1-\epsilon)^{m}$ "fixed h" $P(\exists h \in H_{f} : \hat{R}_{s}(h) = 0)$ $= P(\hat{R}_{S}(h_{1})=0 \text{ (or) } \hat{R}_{S}(h_{2})=0^{--(-1)} \hat{R}_{S}(h_{1})=0)$ $\leq \sum P(\hat{R}_{s}(h)=0)$ hette $\leq (1-\epsilon)^m$ \leq $h \in H_{L}$ |H| (1-f) + hrs ho d for|H| (exp(-mf)) = equate hrs ho d forfor equate on even for the real form of|H| exp(-mf) = for the real form of th< (H) (I-E)^m m (pr), e, d. \leq S if < $m \ge \frac{1}{F} \left(\log \left[\frac{1}{5} \right] \right)$ So, we have $p(R(h_s) > e) \leq \delta$ $P(r(h_s) \leq \epsilon) > 1 - S$ 70

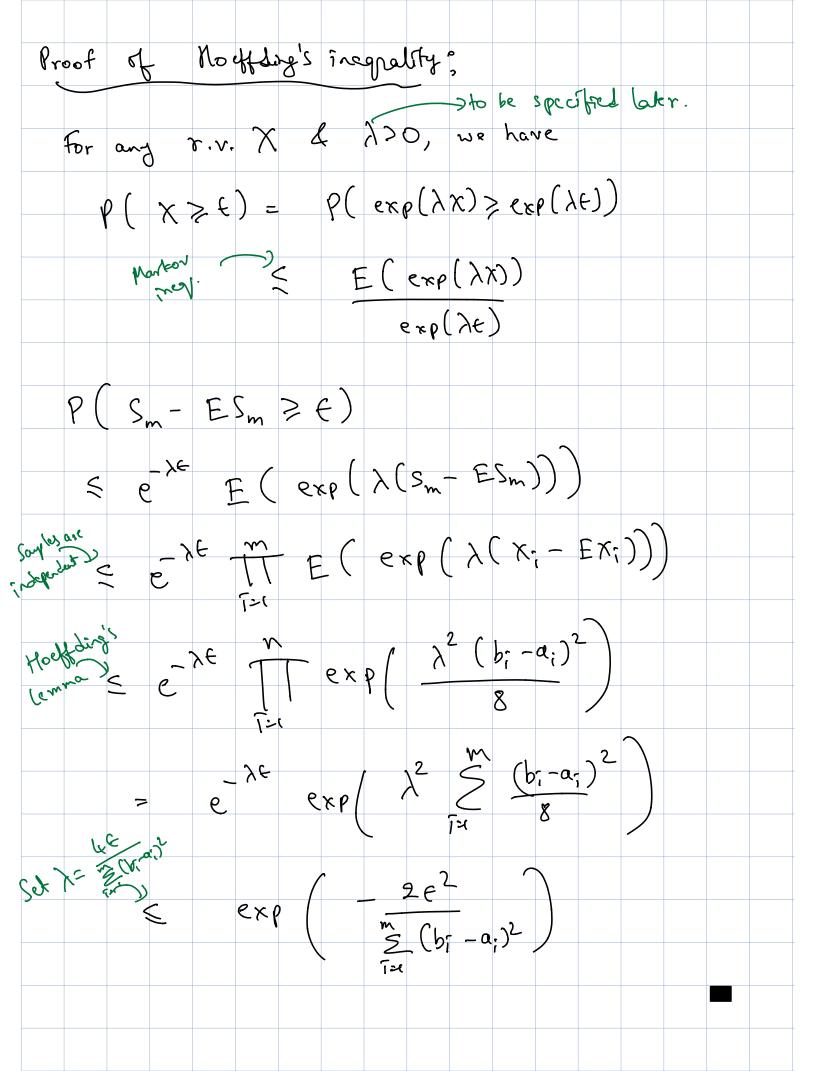


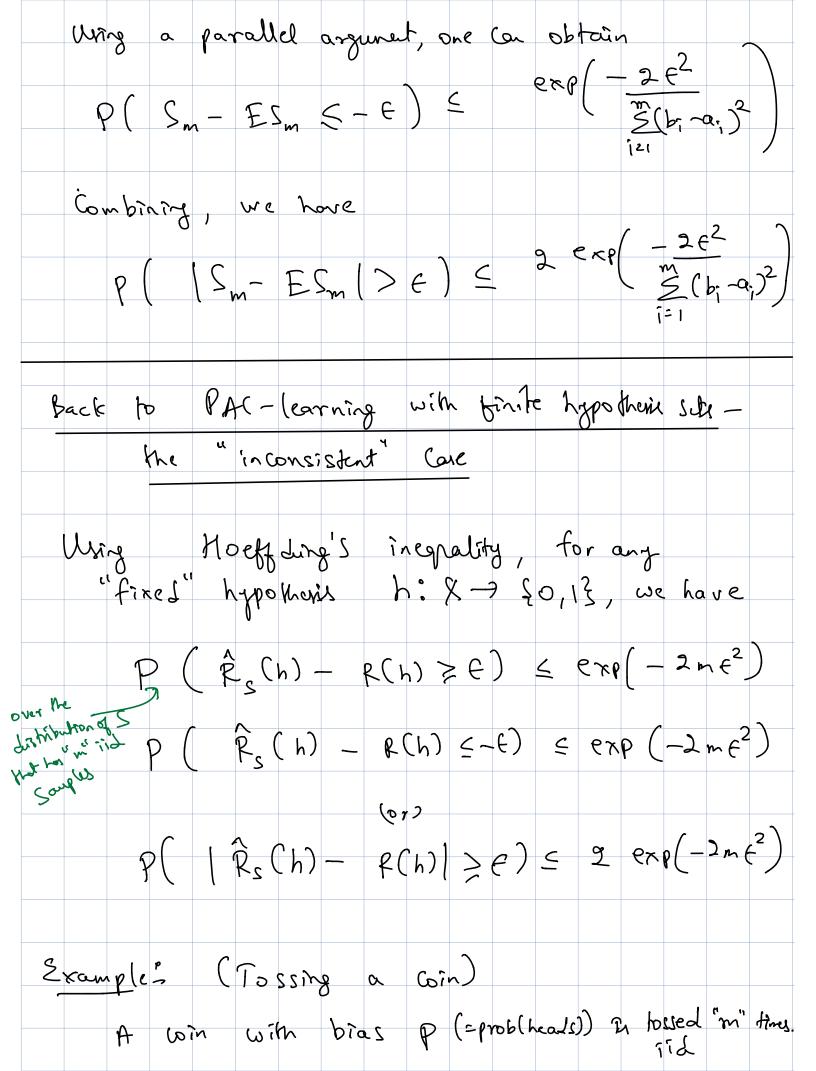
Algorithm: Stort with all literals, soy

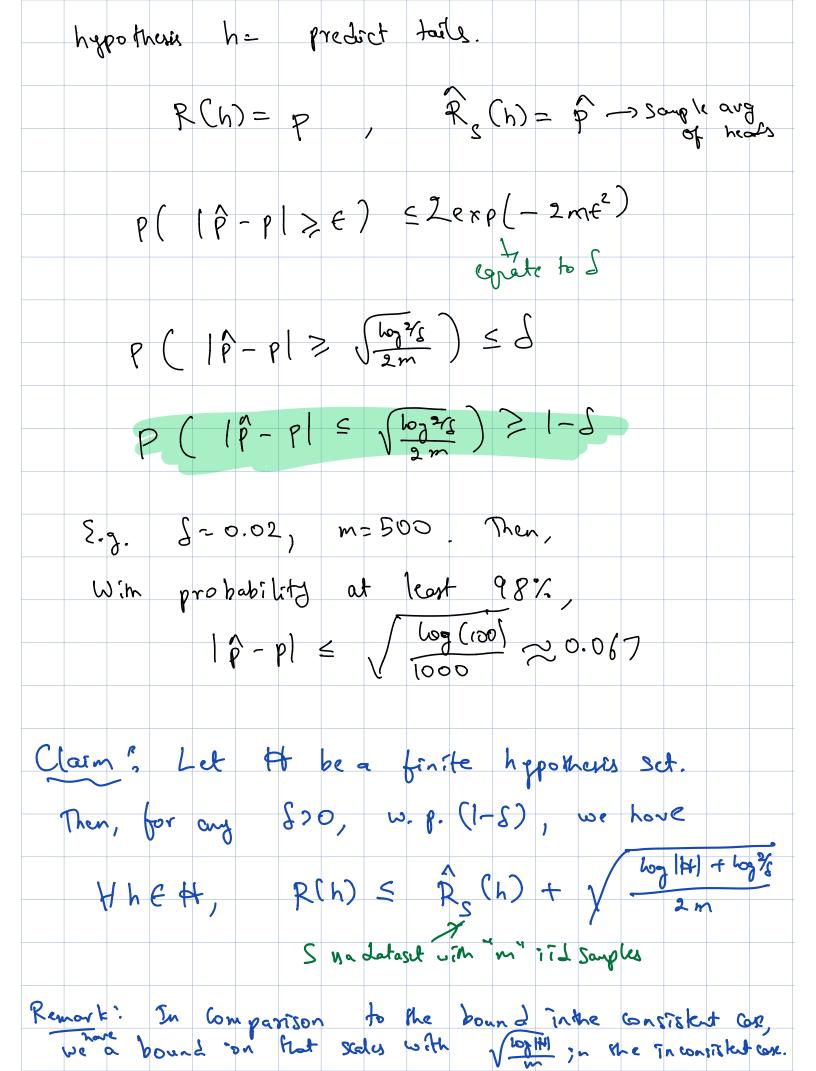
$$x_i \land \overline{x}_i \land \overline{x}_2 \land \overline{x}_1 - \dots \land \overline{x}_d \land \overline{x}_d$$

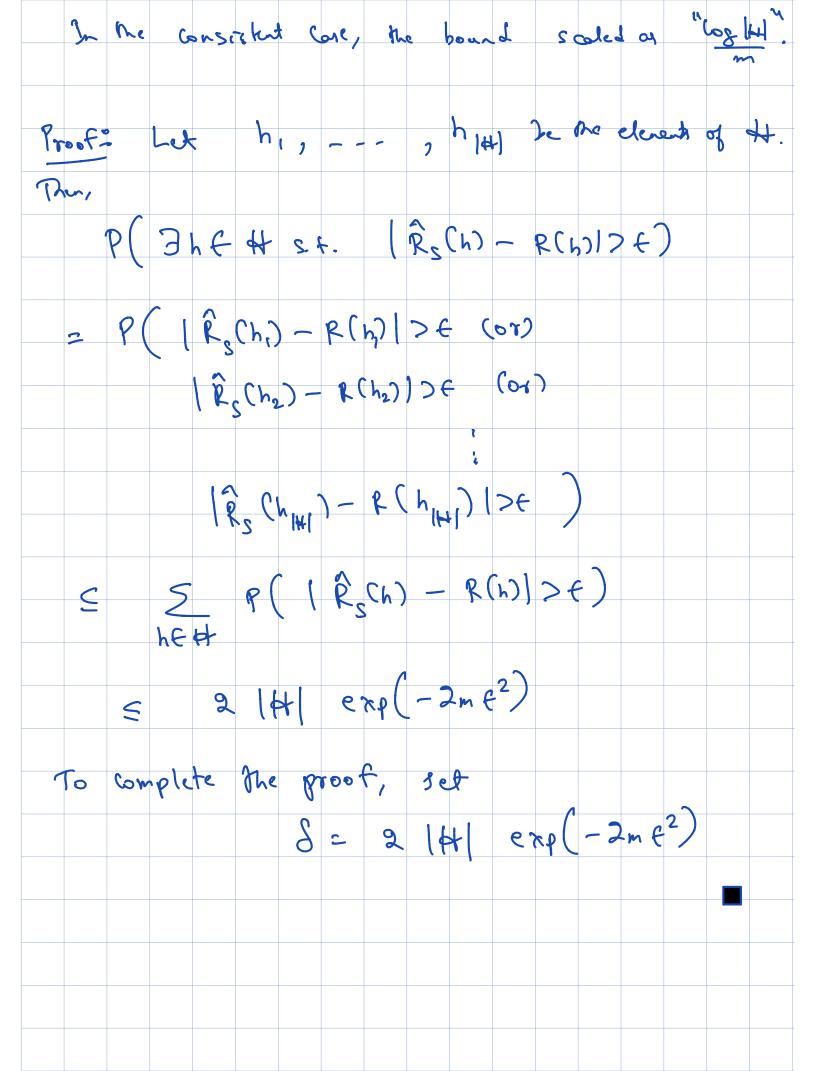
de rule out literals $\bigwedge all are incompatible with
positive examples.
[[H] = 3d
Urg the bound, we get the PAC guaratee
tor $m \gtrsim 1$ (d hog 3 + log 1)
E.g. for S=0.02, E=0.1, d=10,
the bound $\bigwedge m \ge 147$, i.e.,
with at least 147 sampled, we can obtain a
hypothesis that is 90%, accurate with
grobability at least 98%.
Guarantees for a functe hypothesis set, where
consistency is not available.
Probability detour: Hoeff ding! inequality$

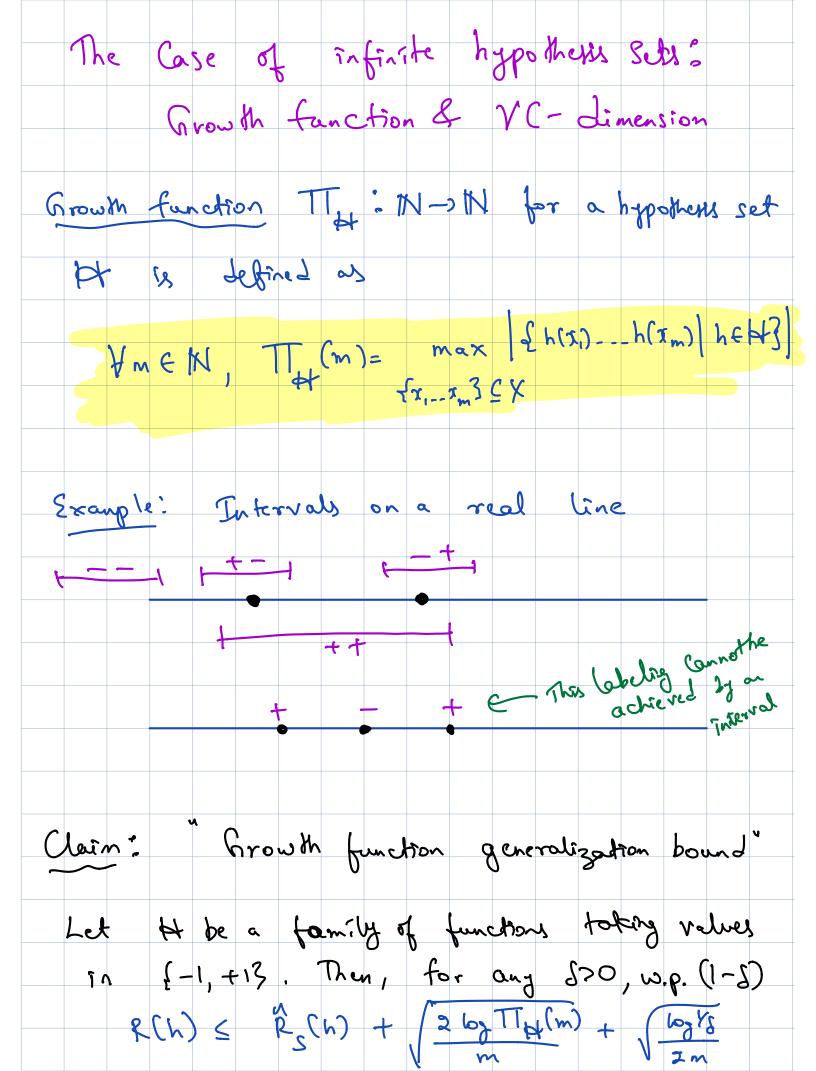


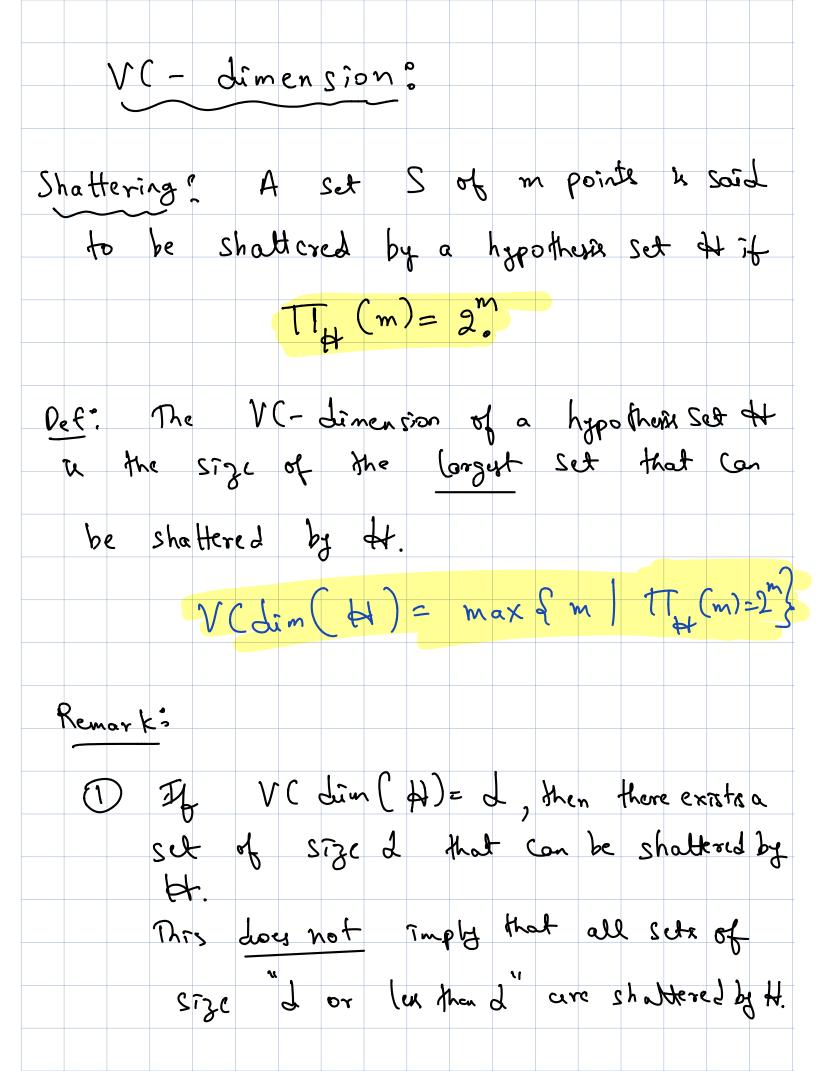




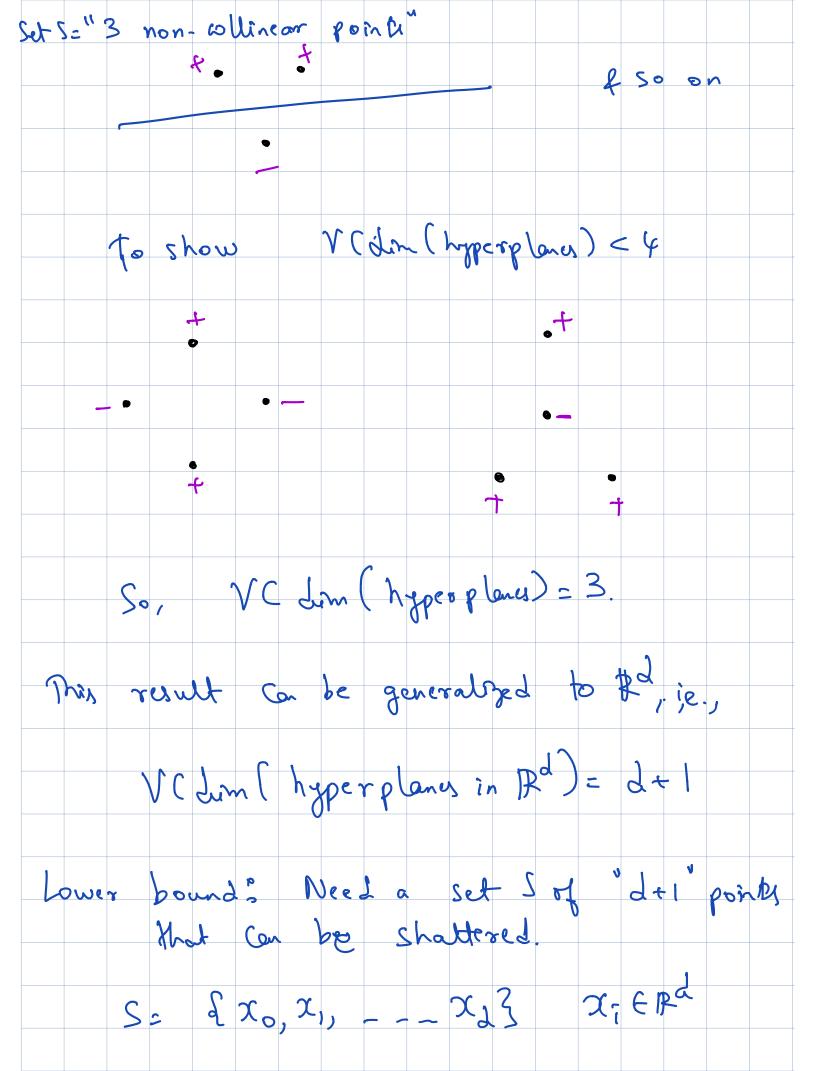


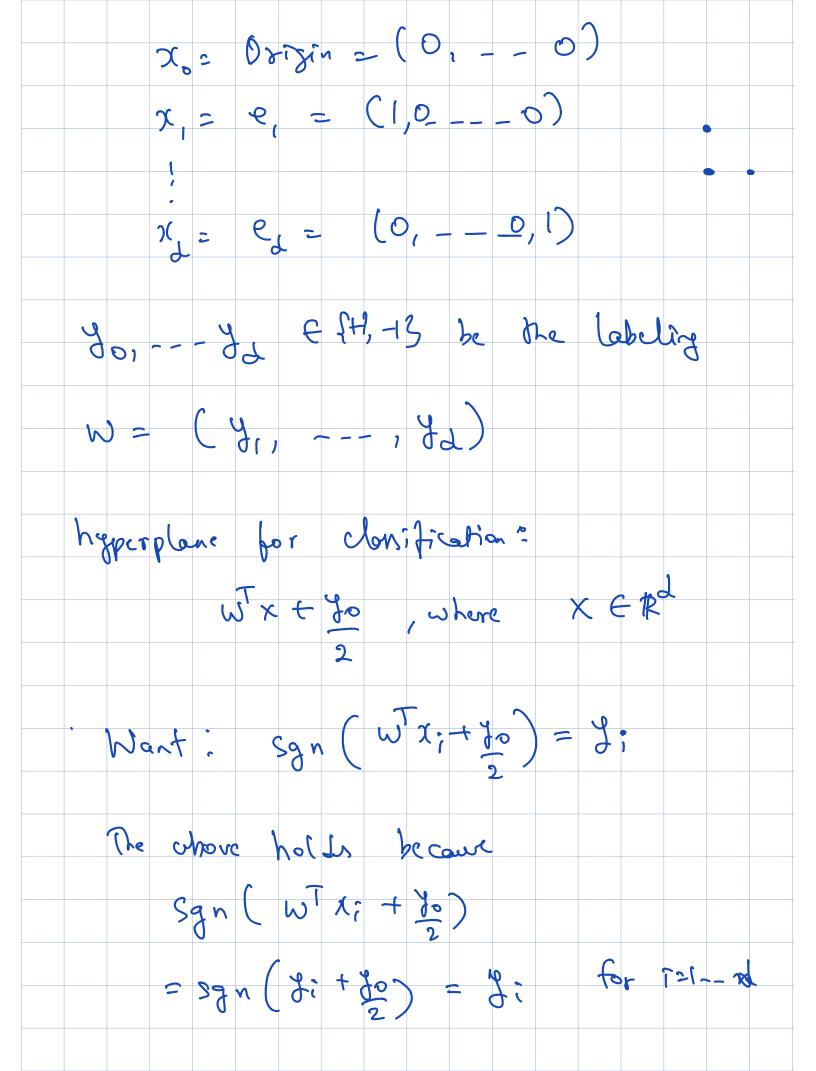






2) To give a bourd for V(dim(H) it is knough to show a set of size I that Can be shattered by \$\$ i.e., VC dun (41) Zd For the upper bound, one has to show that no set S of Cardinality "d+1" can be Shattered by \$4, i.e., VCdim(H) < d+1Example 1: "Intervals on the real line" VC Jim ("set of inkrvals") = 2. Example 2: "Hyperplanes! Consider the set of hyperplanes in PR V (dim (hyperplaces in \mathbb{P}^2) ≥ 3





One can show an upper bound of df2 for V c din (hyperplaces in R) my & Radon's theorem (check the fext book). VC dim (hyperplanes m 12) = d+1 Axis-aligned Rectangles. (AAR) Example 3° VCdim (AAR) 7 4 & so on VCdin (AAR) < 5 ¥ - - - + Examples: "Convex d-gons in the place" Clair: VC dim ((onvex d-yours) > 22+1

