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The PAC learning model
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Note i PAC model is distribution free
fit Training 4 test samples come from the same

distribution
i Learnability in of the concept does
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Tf R has one side in each ri then its error
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Guarantees for finite hypothesis sets Consistent case

Theorem Let It be a finite set of functions
hi X D Let t be an algorithm that for

any target concept CEH and trainingdaters

returns a consistent hypothesis hs i e
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Given dataset S
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Equivalent statement

Set S H1 expf mt

find an expression for C i e
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Example Conjunction of Boolean literals Catmostd ofthem

Boolean literal Xi or Xi

conjunction X n Iz n Xc
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Given a dataset Can we find a consistent hypothesis

Note negative examples are not informative
So focus on the positive examples



Algorithm Start with all literals say
x not nxzmI and a

rule out literals that are incompatible with
positive examples

I 3d

Using the bound we get the PAC guarantee

for m 3 d hog's c Ggg
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the board is m 149 i e

with at least 149 samples we can obtain a

hypothesis that is 90 accurate with

probability at least 98

Guarantees for a finite hypothesis set where

consistency is not available

Probability detour Hoeffding's inequality



Hoeffding's Lemma
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Hoeffding's inequality
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Proof of Roeffbing's inequality
to be specified later

For any r v X 120 we have
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Using a parallel argument one can obtain
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Back to PAC learning with finite hypothesis site
the inconsistent case

Using Hoeffding'S inequality for any
fixed hypothesis h X 7 0,1 we have
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hypothesis h predict tails
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Claim Let It be a finite hypothesis set

Then for any 820 w p fl S we have
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S is a dataset with m iid Samples

Remornkaj In comparison to the bound in the consistent case
we a bound on hot scales with M1 in the inconsistentcase



In the consistent core the bound sealed as 68M
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The Case of infinite hypothesis Sets

Growth function VC dimension

Growthfunction ITH IN 21N for a hypothesis set

H is defined as
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Claim Growth function generalization bound

Let H be a family of functions taking valves
in f l 113 Then for any 820 w p fl S
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VC dimension o

Shattering A set 5 of m points is said
e

to be shattered by a hypothesis set Hif

ITH m _2

Def the VC dimension of a hypothesis set H
in the size of the largest set that can

be shattered by H
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If VC dim H ed then thereexists a

set of size d that can be shatteredby
H
This does not imply that all sets of

size d or less than d are shattered byH



To give a tower bound for VCdimCH

it 4 enough to show a set of size d that

can be shattered by H i.e
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For the upper board one has to show that
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Consider the set of hyperplanes in 1122
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Sets 3 non collinear point
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This result can be generalized to Rd ie
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One can show an upper bound of Dt2 for
Vadim hyperplanes in Rd mrig Radon's theorem

check the textbook

VCdin hyperplanes in Rd D 11

Example 3 Axis aligned Rectangles AAR
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Sauer's emma Let It be a hypothesis set
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Pf From Sauer's lemma
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Main claim Generalization bound with

VC dimension
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For any S O w p I S H HEH
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