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O is a local minima if
f ft E f O HOENECO't for someC70
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O't is a global minima if
f lo't E f o HOERD

Strict local global minima if the inequality in Hex
a strict

First order necessary conditions 9

Let 0
t be a local minima of f Rd R

Suppose that f is continuously differentiable

Then f 0 7 0

Also if f is twice continuously differentiable Ken

2ffo't is positive semi definite
p s d
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I
f is differentiable if Dffa exists Htfkd

Tf Df C is continuous then f is continuously

differentiable Such functions admit a

Taylor series expansion i.e

f x g a f G YT fix 1 o Kyu

4 O.fi o

Tf Rfc is differentiable then

Hessian matrix Tff
2xCi72xCj

i h d

Tf f is twice continuously differentiable
i.e Def exists is lontinuous then

fGuy f x 1

ytpflasttgyttffbdytolllyliDP.TO



Proof of first order necessary conditions
Recall 0 is a local win

g Fix Sfpd Then

fco gs f ft 70
STpfCo him

Sto S

Similarly Tpf 0 770
Pff 0 7 0

I f is twice cont diff'ble Fix SEIR
of is a local win 70

f lo't Ss f Co't f stiff 18215177635 063
of f 0 857 f 0 3 215771075 65

72
So ar f 20 ST fCo s o HSERd

x'fco't is p.s.la

Second order sufficient conditions

Let f be twice continuously differentiable

Suppose O satisfies
Df 7 0 D f lo't is positivedffinite



Then O't is a strict local min of ft
Ff 0 C70 S t

f 1077 f 0 7 5110 0
112 Host
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Ff Ot is a local win then

f 0 1 0 Tff E is p s d

ie Ao't b o A is p s d

Casestoconsidcr5

Aisnotp.s.d no local min

A is p.s.la Then f is convex

so any O satisying DfCo kAo b o

is a global min

If A is P d then A exists
I



Ao b o o A b in the

unique global ruin

Think about the case when

A is p s d singular

Tour of Convexity

Convex sets
Convex

y set

I 2 1127g
Not a

convex set

C C Rd is convex if Lata 2 y C C Hx y EC
HLECo

Convex function

Lf
AH fG

an

i
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Let CERd be a convex set A function f C 2112

Is convex if
f 2 4 2 y E 2ffa 1 I 27ft x



Remark

f is concave if C f is convex

f is strictly convex if the inequality
in is strict Hxty LE Con

E 5 Linear functions are convex

Any norm is convex

Weighted sum of convex functions
is convex index

set

Tf f C 3112 is convex Hi C I
then hCx7 Sup fifx is convex

if I

Differentiable convex function

Let C C Rd be convex and filled 2112 be a

differentiable convex function Then
µ

f f is convex f 3 flat Rfk

HK 2fC

i Tf the inequality in att is strict then f is

strictly convex
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Lemmy Let C C Rd be convex and f be

twice continuously differentiable Then

C Tf Tff is positive semi definite Cp.s.d
Hk EC then f is convex over C

Ii If Tiff is positive definite H xtc then

f is strictly convex

E g flak TAX A is symmetric d xd

Then f is convex A is P S d

f is strictly convex A is p d

theorem Let C ER be convex

f c R be convex Then

a local minima of f is a global minima



In addition if f is strictly convex then

Fat most one global minima

Convex hull The convex hall denoted convCSD

of a set of point XE Hd is the smallest

convex set containing X

Connel 74 Xi 1m31 fif El m3

Xi E X
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Gradient descent

win f Co
OERd

Ott Of the St
T

learning rate step size

St c descent direction ie f Cote f Ot



or Dfl St 0 assuming

17 floe O

In a gradient descent CGD algorithm
Df Ot

floeTSe HP floe 1140

A first order approximation to f agields

f Ota floe Le HPflotxReflot

If f is convex GD converges to a

global minima

Elke convergence in to a stationary point O
ie Pf D

GD Oa Ot Lt Pfloe

Stochastic gradient algorithm

O Pf fo
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Zero mean noise
bounded variance

i On Ot Lt Pf Ot 1 wt
x

stepsiyellearnigrate 1

noisy observation of the
gradient of f at Ot

Ste Pf Ot wt

Conditions for ensuring the update
in Cc for Ot guarantees convergence

to O a local optima off

A Typical assumption for stepsizes

Lee Leka
e g Lee



Let It be the information

available upto time t i.e

Oo Q wi Ot e

Ee El we 17 7 0 andconditional
mean

Boarded E f 11Well Ie E At BHPfloevariance

Simple case We is i i d

e g Wt N N 10,02

Descent direction

Df COATE Sette 0

Observe for a SG algorithm
see D f Ot wt
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Df Ot
T
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11TH f Il e O

Tt can also be checked that

F 114112 7
11 Tf 10pm't ECHWTHYFE

2 PflotfElwett
E 1117 floe 1ft At B HPflot 112

At Btl 1117 floe 112

Under the preceding assumptions

ie under A1 AZ ad f is smooth



like Dfcot D
too

and the limit point say O of the

sequence Of is a stationary point

of f Lor Df 10 7 0

Stochastic gradient descent

want to minimize a function f that is a

finite sum of smooth functions Ie

f ok f fico

e Given Xi y i I n

f 107 2T Hi aid

Goal in to find a minimizer off



Deterministic GD or batch GD

Ott Ot Le th Pfi Ot

Batch GD is computationally intensive

on large training datasets i e n 71

Stochastic gradient descent SGD
w p n

Let in

h a

Pick one of the component functions

why the distribution of in i e

each fi has the same chance of being chosen

or fin fi w.p.tn Hi

Ott Ot Lt 17 fin Ot
E

SAD update iteration only one gradiat computedper iteration
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Rewrite ShD update as

Ott Of dnt Dfi Ot

2e Pf q In fiQ

Ott Ot Lt Pflot Le
ut't

T noise

Recall f In fi

Choose Le S t E Lte n E to

Observe that information upto the t

EC Pfincot I ht 10

E we 17.1 0

F 114 112 7 F 1117719.7112 7

IE Pf 10 7177 12

E E HD fin 1147
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If we assume ADF.CO H2E A 1131117403112
HO

ther
F HUHNE E Ct D 11TH lot lR

Hence Of updated my SGD

converges w.pl to a point o

that satisfies Ho't o

In the context of linear regression

flok In Yi IFOR i

Batch GD Ot of Lent Hi ti't

SGD 0 Ot de Xin Lin Xinot

computational advantages of SAD are clear



Further SGD converges


