
 

Support Vector Machines SYMS

Ref Chapter 5 of Fork book by Mohn etat

Sting Two class classification problem
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Goal Minimize the generalization error
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if F w b s t

Wtxitb o Hi swim yi tl and

whitbao Hi win gin i

Note is equivalent to saying Fc o S t

wt x fb 7C Hi Yin 11 since we have a

w ti th c c Hi y I finite ofPonts

we can scale web to have

wTx b3tl Hi with fistl
wt x BE 1 Hi with yin I

Li Wix b z
Conditionfor

r evivalutty Hi linear
separability



Assume 5 is linearly separable

Concept of margin

Margin en x of a linear dacsifier he.x wTxtb at
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SVM Finds a hyperplane with the maximum margin
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Optimization problem underlying the SVM method

Maxinizey f L minimizing 1110112
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Primal problem

wYj
11412

Subject to yifwxitb731 int m

Quadratic optimization problem with
linear inequality constraints

A brief hour of constrained optimization
Ref Appendix B of Fomc book

constrained optimization problem
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Lagrangian L K L Lm is defined by

LCR 2 Lm fix t E digital
Dual function
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Dualproblem
max FCL Lm
L Lm
S t L 70 iz l m

Karash Kahn Tucker KKT conditions

Assume f Gi i I m are convex differentiable

constraint gratification hold FI C interior tf X
s t g Cisco
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I is a solution of the primal problem

if and only if
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Ii gift 7 0 Tei im complementary slackness

Nyt Let p be the optimal valve of the
primal problem d
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weak duality dte ft

p di c Duality gap

Strong duality d p f no dualitygep

Tf the primal problem is a convex optimization problem

fog are convex a constraint qualification holas

F I f int X s.tg.CI Koti then

strong duality holds



If the constraints are linear then the
constraint qualification holds

Back to the SVM optimization problem in

the linearly separable case
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Observe that

optimal w is a linear combination of the data x Xm

In fact let Se il Lito
Then from we Edifixi

its

Vectors Xi with Lito are the support vectors

From for the supportvectors yifwtx.tt l

Cov the support vectors tie on the marginal hyperplanes

Also be Li WTXi where ai ta Supportvector
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Dual optimization problem
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Note that if Li Yi 70 then FCL Ln a
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The infinum is attained at w Edi Li Xi
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H h a constrained optimization problem where
the objective is quadratic and the constraints

are linear

The dimension of Kne id problem is M

can we QP solvers for H



Strong duality holds Solving M gives 2 dm

which can be med to determine the solution web
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SVM in the non separable case aka softmargin SUM

big

hi wTx b HL
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Training data is not linearly separable which is

equivalent to
H hyperplanes wTxtb o FX ES s t

y wiki b 3 1

A relaxed version of holds i e

Hi I m F fi 70 such that

yicwtx.itb 3 l S

slack variables.S measure by how much a

point Xi violates the separability constraint
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If we ignore the outliers then a marginof f

is achieved hence this margin is referred by
soft margin

Primal optimization problem

WY f waste si

s.t.yicwxitb731 E.si it m
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objective here is win IzHwa t C 28

I 5min 11Wh
minimize the slackmaximizing slack in due tothe margin outliers

where p I

H in a convex optimization problem

since FEST 11514 f G E

in a convex function

Choice f I and f 2

Hinge loss Quadralichigelocs
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wining i
w t C Si

s.f y Cwixitb l Si it m

Si 30

Recipe for foluig is

Apply KKT conditions
Work out dural function
formulate f Solve dual popknization problem
ble soca of dual problem to obtain
the soft margin SUM hyperplane classifier
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Optimal w has the same expression as before
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Xi appears only if Lito
Such Xi's are the support vectors

For a support vector Xi we have

yiCwxi b I es

Ff Ei 0 then Yi CaiXi 14 1 Xi is on oneofthe
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Ff Sito then D is an outlier and

Ri 0 which implies Linc



Dual optimization problem
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Dual function is the same as before f lifeser

However in addition to 2,70 Editio

we require disc

So the dual optimization problem is
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is similar to 7 f dual problem in the
separable Cane with an additional constraint 2 EC



turf
The complexity of H is comparable to Retof

A one Could wa a QP solver in
either case

The solution K Lm of can be used
to define the soft nayin SUM hyperplane as
follows
hCx7 Sign width

sign fE2iyi Ixia b
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Idea Take data fix

to
High dimensional space H

S run SUMS in H since the date
could be linearly separable in H

SVMs in high dimwions

pin
ahighdingional

feature nappies
hCx7 Sign width to ftp.awnwl

sign EE 2iy.nolxiIoGD b
Space

where
b yi fEdjL 101kg.TOCxiD

for any Xi with 0C Lice
Observe feature 2 appears only through inner products

Wig the kernel trick the inner products can be

computed efficiently even in high dimensions

e g
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A function K Xxx 3112 such that

Hx x't X Kla x Close olla'D
for some function of X H



H Hilbert space

Hilbert spacett in a vector space that Is equipped

with an inner product 4 is complete

all Candy sequences converge

The norm induced by the inner product is

Hally VE HEH

Not There are kernels where Kfx x can be
completed in d D input feature dinarion

while computing Coffx if D is

0C dinCH with Linch 7 d

Qadir Given a function K can we infer that

kid a kernel s equivalently there in a

Hilbert space H 4 feature mapping Of St

klx.si Locx30GiD

Ya if K is positive definite symmetric pps



Tf K is PDS then F H ol s t

holds

So one need not define or compute

K being PDS ensauxes existence of a 01

Definition Pps
A kernel k Xxx R is PPS if
for any Ex Xm EX the matrix

PIC
kcxi.IN

g m

is symmetric positive

µmd Semi definite spSD
matrix

1L is SPSD if one of the following conditions
holds
Eigenvalues of TL are non negative

for ay veda C CC Cmf
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Examples of PDS kernels

Polynomial kernel

Fix a constant C o A polynomial kernel of
degree p is given by

pKla x x'x't
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Achieving linear separation why a polynomial
kernel

na
W a polynomial kernelwithal I

C il C 1,177 1,1 ER f 1 2
x C 4 1,1 E R2 E Dz

fi 4 i 1 f I 1 1,1 E R R 7 3
XOR problem I 1 7 1,1 If 12,172
not linearly separable

paper
23 21

linear separation Rx

wog a polynomial
2 24

kernel
Note Polynomial kernel is PPS since we wrote as a

inner product with an explicit 10

Example 9 Gaussian kernels

IX x'CRd Kapil exnf 1112

Gaussian kernel is PDS can be shown any

the normalization property of PDS kernels



Excerpt Sigmoid kernels

HxpifRd kfx.si tanh alxtsiltb

note sigmoid kernels SUM simple neuralnetwork

Claim without proof8

Let K 8 4 7112 be a PDS kernel
Then there exists a Hilbert space H and a

mapping 4 SHH s t

Ha x'C X Kla d Lol 7,010 D

Verifying that the Gaussian kernel is PDS

Normalized kernel K associated with a

PDS kernel k is

Hnx'fX K x x
0 if kfx.xt oorsklxit.to
kcx.si else
1147471447

By definition K x x L Hx C X



A haunion kernel can be seen as the

normalized kernel of the kernel K x x'text
This car he argued as follows

K x.si exp IIzI
Ik'Hinklini

expfg.mg xrfjIzI

expf llx x 112
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in the Gauvin kernel obtained by
hounding K

i of Tf k is PDS then its

normalized variant Is PDS as well

To see hot K x x exp III is PDS

K'lx.si Eloise't
in j 9b.EE

K in a positive linear combinationof
polynomial kernels
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Aai Tf k k are PDS kernels then

Ktk is a PDS kernel
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Claim PDS kernels closed under pointwise limit
Composition with f x 2 EfaxD aj3o checkthis

hence haunia Kennel is PDS

511ms win PBS kernels

Idea Replace six with KCapi

Dual optimization problem after incorpoakgakernelis
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Solving the optimization problem would lead to

the following classifier

hah sign E LILI KCxi x7tb
where b yi 2jdjkcxj.si

for Xp Sit 0 2 CC

Kernel Ridge Regression
Sec 11.3 of FOMC book

Input space XEIRD
Feature mapping of X Rd

Linear hypothesis set

h hhc wtfCx w c Rd

linear regression recall S fcxi.fi i I m

min I 7 wtf xi fi
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where A is the feature matrix with rows 0145



Y is a vector with components y

Jfw is minimized by the solution to

ATA Wa ATT

Ridge regression 4 its connection to kernels
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is invertible became
ATA is positive Suiadefenite

770

An equivalent formulation for ridge regression
mwin

wT lxi yi
2
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Ol In a constrained optimization problem
with convex objective as well as convex constraints

why
ol can be re written as
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2 2 Convex optimization problem

Lagrangian
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Lagrange multipliers

Applying KKT conditions we obtain
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Plugging in expressions for w f fi from KKT Conklin

into the Lagrangian
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The dual optimization problem is
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Ife AT is the kernel matrix

Optimizing the dual

GCL O

I 2 K XI 2 24

L Iet XI Y G
is invertible why
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Ung KKT condition
m

w Edi 4Gt ATL ATCHIXITY
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Linear hypothesis
Hx wtf Cx
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Any PDS kernel can be used to
arrive at this predictor

fprimaliti.e.fi Solviydnal i.e

fFtd d et t
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0 d 3 Kernel matrix is computed in

multiply win AT 0 km2
0 d

Total con of indie d 3
Twerks Ict XI
I OCm3
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04dB vs 0 m3

Tf in a mapping onto a high Liminal
feature space 4 if the of Haig Suples
is moderate d 77 m then solvingthe

dural is computationally advantageous

Prediction lost wtf x coupled in old fer he

prinal

In care of the dual

computing KH x Kam Y
for a given 7C is 0 km

YTL is 0cm
so total prediction lot of km


