CS6015: Linear Algebra and Random Processes Quiz - 2 Course Instructor : Prashanth L.A. Date : Aug-28, 2017 Duration : 30 minutes

Name of the student : Roll No :

INSTRUCTIONS: For true/false questions, you do not have to justify the answer. For the rest, provide proper justification for the answers. Please use rough sheets for any calculations *if necessary*. Please **DO NOT** submit the rough sheets. DO NOT use pencil for writing the answers.

1. True or False? Answer any five.

(2+2+2+2+2 marks)

Note: 2 marks for the correct answer and -1 for the wrong answer.

- (a) If the columns of a matrix A are linearly dependent, then Ax = 0 has a non-trivial solution.
- (b) Let S be a subspace of \mathbb{R}^n . The projection p of a $b \in \mathbb{R}^n$ is zero if and only if

$$b^{\mathsf{T}}y = 0$$
 for all $y \in S$

(c) A matrix A can have a column space that contains $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ and a null

space that contains $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

- (d) There exists a $m \times n$ matrix A with m < n whose null space is $\{0\}$.
- (e) The dimensions of the row space and column space of a $m \times n$ matrix, with $m \neq n$, are the same.
- (f) If P is a projection matrix, then $(I P)^2 = I P$.
- (g) If A is a $m \times r$ matrix with r independent columns and B is a $r \times n$ matrix with r independent rows, then AB is invertible.
- 2. For each of the matrices below, solve Ax = 0 and characterize the null space by finding its basis.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 (2 marks)
(b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ (5 marks)
(c) $A = \begin{bmatrix} 1 & 2 & \dots & n \\ 2 & 3 & \dots & n+1 \\ \vdots & \vdots & \ddots & \vdots \\ n & n+1 & \dots & 2n-1 \end{bmatrix}$ (3 marks)