CS6015: Linear Algebra and Random Processes Quiz - 3 Course Instructor : Prashanth L.A.

Date : Sep-5, 2017 **Duration** : 30 minutes

Name of the student : Roll No :

INSTRUCTIONS: For true/false questions, you do not have to justify the answer. For the rest, provide proper justification for the answers. Please use rough sheets for any calculations *if necessary*. Please **DO NOT** submit the rough sheets. DO NOT use pencil for writing the answers.

1. True or False? Answer any five.

(2+2+2+2+2 + 2 marks)

Note: 2 marks for the correct answer and -1 for the wrong answer.

- (a) T(u) = v for some (fixed) $v \neq 0$ is a linear transformation.
- (b) Suppose P_1 and P_2 are projection matrices. Then

$$(P_1 - P_2)^2 + (I - P_1 - P_2)^2 = I.$$

(c) Let $\{q_1, \ldots, q_n\}$ be an orthonormal subset of vectors in \mathbb{R}^n and T be a linear transformation that satisfies

$$T(q_i)^{\mathsf{T}}T(q_i) = q_i^{\mathsf{T}}q_i, \ i = 1, \dots, n.$$

Then, the set $\{T(q_1), \ldots, T(q_n)\}$ is orthonormal.

- (d) If a linear transformation $T : \mathbb{R} \to \mathbb{R}$ satisfies T(4) = 24, then T(x) = 6x, for all $x \in \mathbb{R}$.
- (e) If v_1, \ldots, v_n are linearly independent vectors in V and T is a linear transformation from V to V, then $T(v_1), \ldots, T(v_n)$ are linearly independent.
- (f) If $T(v_1), \ldots, T(v_n)$ are linearly independent vectors in V, where T is a linear transformation from V to V, then v_1, \ldots, v_n are linearly independent.
- (g) Every orthonormal set of vectors in \mathbb{R}^4 must be a basis for \mathbb{R}^4 .
- 2. Consider a subspace S of \mathbb{R}^4 spanned by the following vectors:

$u_1 =$	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$, u_2 =$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$	and $u_3 =$	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	
	0		0		1	

Using the usual dot product on \mathbb{R}^4 , do the following:

- (a) Convert $\{u_1, u_2, u_3\}$ to an orthonormal basis for S. (5 marks) (b) For $b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, find the "least-squares approximation of b" in S. (3 marks)
- (c) Explain why Gram Schmidt algorithm fails when the input set of vectors is linearly dependent. (2 marks)