CS6015: Linear Algebra and Random Processes Course Instructor : Prashanth L.A. Quiz - 4: Solutions

- 1. True or False?
 - (a) If 0 is the eigenvalue of a matrix A, then A cannot be invertible.

Solution: True. If there exists an $x \neq 0$ such that Ax = 0, then A is not invertible.

(b) For any square matrix, |-A| = -|A|.

Solution: False. Consider any $2n \times 2n$ matrix A with $|A| \neq 0$.

(c) If $T : \mathbb{R}^3 \to \mathbb{R}^2$ and $S : \mathbb{R}^8 \to \mathbb{R}^3$ are linear transformations, then ST is a linear transformation from \mathbb{R}^8 to \mathbb{R}^2 .

Solution: False.

(d) Let A, B, C, D be square matrices. Then,

 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & C \\ B & D \end{vmatrix}.$

Solution: False. Consider
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$.

(e) For any $a, b, c, d, e, f, g, h, i \in \mathbb{R}$,

 $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, B = \begin{bmatrix} c & a & b \\ f & d & e \\ i & g & h \end{bmatrix} \text{ are similar.}$

Solution: False¹. If the matrix A were to be similar to B, they would have the same characteristic polynomial. However, with a = 1, e = 2, i = 3 and rest of the entries zero, the characteristic polynomial of A is $(\lambda - 1)(\lambda - 2)(\lambda - 3)$, while that of B is $\lambda^3 - 6$, leading to a contradiction.

(f) For a matrix A, let λ_1 and λ_2 be two different eigenvalues with corresponding eigenvectors x_1 and x_2 . Then, $x_1 + x_2$ is an eigenvector for A.

Solution: False. Suppose $x_1 + x_2$ is an eigenvector for A, i.e., $A(x_1 + x_2) = \lambda_3(x_1 + x_2)$. Then,

$$A(x_1 + x_2) = \lambda_3(x_1 + x_2)$$

$$\implies Ax_1 + Ax_2 = \lambda_3(x_1 + x_2)$$

$$\implies \lambda_1 x_1 + \lambda_2 x_2 = \lambda_3(x_1 + x_2)$$

$$\implies (\lambda_1 - \lambda_3)x_1 + (\lambda_2 - \lambda_3)x_2 = 0,$$

a contradiction since eigenvectors x_1 and x_2 corresponding to different eigenvalues λ_1 and λ_2 are linearly independent.

¹Thanks to Dr. P. Viswanadha Reddy of EE-IITM for the counterexample.

(g) Let A, B be $n \times n$ matrices. Then, |AB| = |BA|.

Solution: True.

2. Let
$$A\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) = \begin{bmatrix} x+2y-z\\ -y\\ x+7z \end{bmatrix}$$

(a) What is the matrix of A w.r.t. the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$?

Solution:

$$A\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\1\end{bmatrix}, A\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\0\end{bmatrix} \text{ and } A\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\0\\7\end{bmatrix}$$
So, the matrix of A w.r.t \mathcal{B} is $\begin{bmatrix}1 & 2 & -1\\0 & -1 & 0\\1 & 0 & 7\end{bmatrix}$.

(b) What is the matrix of A w.r.t. the basis
$$\mathcal{B}' = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
?

Solution:

$$A\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\1\end{bmatrix} = \begin{bmatrix}1\\0\\0\end{bmatrix} - \begin{bmatrix}1\\1\\0\end{bmatrix} + \begin{bmatrix}1\\1\\1\end{bmatrix}.$$
So, the first column of $\begin{bmatrix}A\end{bmatrix}_{\mathcal{B}'}$ is $\begin{bmatrix}1\\-1\\1\end{bmatrix}$.
The other two columns follow in a similar fashion and we obtain,

$$\begin{bmatrix}A\end{bmatrix}_{\mathcal{B}'} = \begin{bmatrix}1 & 4 & 3\\-1 & -2 & -9\\1 & 1 & 8\end{bmatrix}.$$

(c) Relate the matrices, say $[A]_{\mathcal{B}}, [A]_{\mathcal{B}'}$, obtained in the answers to the parts (a) and (b) above using an invertible S such that

 $[A]_{\mathcal{B}'} = S^{-1}[A]_{\mathcal{B}}S.$

Solution: Let $\mathcal{B} = \{e_1, e_2, e_3\}$ and $\mathcal{B}' = \{b_1, b_2, b_3\}$ Now, $Se_1 = b_1 = e_1,$ $Se_2 = b_2 = e_1 + e_2,$ $Se_3 = b_3 = e_1 + e_2 + e_3.$ Hence, $S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$