CS6015: Linear Algebra and Random Processes Course Instructor : Prashanth L.A. Quiz - 6: Solutions

1. True or False?

(a) In $B \subset A$ and $\mathbb{P}(B) \neq 0$, then $\mathbb{P}(A \mid B) = 1$.

Solution: True. Follows by definition of $\mathbb{P}(A \mid B)$ after observing that $A \cap B = B$.

(b) If $\mathbb{P}(A) = \mathbb{P}(A \mid B) = \mathbb{P}(A \mid C)$, then $\mathbb{P}(A) = \mathbb{P}(A \mid B \cap C)$.

Solution: False. Toss a fair coin thrice. Let A be the event that the first and second outcomes are different, B the event that the second and third outcomes are different and C the event that the first and third outcomes are different. Then,

$$\mathbb{P}(A) = \mathbb{P}(A \mid B) = \mathbb{P}(A \mid C) = \frac{1}{2}, \text{ but } \mathbb{P}(A) = \mathbb{P}(A \mid B \cap C) = 0.$$

(c) Let X be a random variable with distribution F and a < b. Then,

$$\mathbb{P}\left(X \in (a,b)\right) = F(b) - F(a).$$

Solution: False. $\mathbb{P}(X \in (a, b)) = \lim_{y \uparrow b} F(b) - F(a).$

(d) If F is a distribution function, then so is G, where $G(x) = 1 - F(x), \forall x \in \mathbb{R}$.

Solution: False. Notice that $\lim_{x\to\infty} G(x) = 0$.

(e) If A, B, C are independent events and $\mathbb{P}(C) > 0$, then A and B are conditionally independent given C.

Solution: True. Since A, C are independent $\mathbb{P}(A \mid C) = \mathbb{P}(A)$. Similarly, $\mathbb{P}(B \mid C) = \mathbb{P}(B)$.

$$\mathbb{P}\left(A \cap B \mid C\right) = \frac{\mathbb{P}\left(A \cap B \cap C\right)}{\mathbb{P}\left(C\right)} = \frac{\mathbb{P}\left(A\right)\mathbb{P}\left(B\right)\mathbb{P}\left(C\right)}{\mathbb{P}\left(C\right)} = \mathbb{P}\left(A\right)\mathbb{P}\left(B\right) = \mathbb{P}\left(A \mid C\right)\mathbb{P}\left(B \mid C\right).$$

(f) If X, Y are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, then so is min $\{X, Y\}$.

Solution: True. Notice that $\{\min\{X,Y\} \leq z\} = \{\omega \mid \min\{X(\omega),Y(\omega)\} \leq z\} = \{\omega \mid X(\omega) \leq z\} \cup \{\omega \mid Y(\omega) \leq z\}$ and the statement follows.

- 2. Suppose there are N+1 urns, each containing a total of N red and white balls. The urn number k contains k red and N-k white balls (k = 0, 1, ..., N). An urn is chosen at random and n random drawings are made from it, the ball being replaced each time.
 - (a) Let A be the event that all n balls turn out to be red. What is $\mathbb{P}(A)$?

Solution: If urn k is chosen, then the probability that n balls are drawn is $\left(\frac{k}{N}\right)^n$. Since each urn has a probability of $\frac{1}{N+1}$ to be chosen, we have

$$\mathbb{P}(A) = \frac{1}{N+1} \left(\left(\frac{1}{N}\right)^n + \ldots + \left(\frac{N}{N}\right)^n \right).$$
(1)

(b) Given event A, what is the (conditional) probability that the next drawing will also yield a red ball?

Solution: $\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$, where $\mathbb{P}(A)$ is given by (1) and $\mathbb{P}(A \cap B)$ is calculated as follows:

$$\mathbb{P}(A \cap B) = \frac{1}{N+1} \left(\left(\frac{1}{N}\right)^{n+1} + \ldots + \left(\frac{N}{N}\right)^{n+1} \right).$$
(2)

We have used the fact that $A\cap B$ would be the event that n+1 balls are drawn from a randomly chosen urn.