CS6015: Linear Algebra and Random Processes Course Instructor : Prashanth L.A. Quiz - 7: Solutions

1. True or False?

(a) Let $\operatorname{Cov}(X,Y)$ denote the covariance of X and Y. If $\operatorname{Cov}(X,Y) = 0$, then X and Y are independent.

Solution: False

(b) If $\operatorname{Var}(X) = 0$, then $\mathbb{P}(X = c) = 1$ for some $c \in \mathbb{R}$.

Solution: True

(c) There does not exist a r.v. X that satisfies $\mathbb{E}\left(\frac{1}{X}\right) = \frac{1}{\mathbb{E}(X)}$.

Solution: False

(d) If $\mathbb{E}(X) < \infty$ then $\operatorname{Var}(X) < \infty$.

Solution: False

(e) If $\operatorname{Var}(X) < \infty$ then $\mathbb{E}(X) < \infty$.

Solution: True

(f) Let $\rho(X, Y)$ denote the correlation coefficient of X and Y. Then, for any a, b, c, d with a > 0, c > 0,

 $\rho(aX+b,cY+d)=\rho(X,Y).$

 ${\bf Solution:} \ {\rm True}$

2. Let X and Y be independent r.v.s taking values 1, 2, 3, 4, each with probability $\frac{1}{4}$. Let $Z = \max(X, Y)$.

Answer the following:

(a) Write down the joint distribution of X and Z?

Solution: The joint mass function of X and Z is given by										
	Z = 1	Z = 2	Z = 3	Z = 4	f_X					
X = 1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$					
X = 2	0	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$					
X = 3	0	0	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{1}{4}$					
X = 4	0	0	0	$\frac{4}{16}$	$\frac{1}{4}$					
f_Z	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{7}{16}$			_			

Using the table above, it is straightforward (and tedious) to write down the joint distribution F of X and Z, though I meant to ask only the joint mass function and not F.

(b) Find $\mathbb{E}(X)$ and $\mathbb{E}(Z)$.

Solution: $\mathbb{E}(X) = \frac{5}{2}$ and $\mathbb{E}(Z) = \frac{25}{8}$

(c) Find Cov(X, Z).

Solution: $Cov(X, Z) = \frac{5}{8}$ can be inferred from the following table coupled with part (a):

	$Z - \mathbb{E}(Z) = -\frac{17}{8}$	$Z - \mathbb{E}(Z) = -\frac{9}{8}$	$Z - \mathbb{E}(Z) = -\frac{1}{8}$	$Z - \mathbb{E}(Z) = \frac{7}{8}$
$X - \mathbb{E}(X) = -\frac{3}{2}$	$\frac{51}{16}$	$\frac{27}{16}$	$\frac{3}{16}$	$-\frac{21}{16}$
$X - \mathbb{E}(X) = -\frac{1}{2}$	-	$\frac{9}{16}$	$\frac{1}{16}$	$-\frac{7}{16}$
$X - \mathbb{E}(X) = \frac{1}{2}$	—	—	$-\frac{1}{16}$	$\frac{7}{16}$
$X - \mathbb{E}(X) = \frac{3}{2}$	-	—	—	$\frac{21}{16}$

In the above, we tabulated $(X - \mathbb{E}(X))(Z - \mathbb{E}(Z))$ and Cov(X, Z) can be inferred by multiplying the entry in the table above with the corresponding probability from part (a) and summing them up.