CS6015; Linear Algebra and Random Processes Tutorial – 2 Date: 1/9/2017

1. If the matrix of a linear transformation A w.r.t. the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is $\begin{bmatrix} 1&1\\1&1 \end{bmatrix}$, what is the matrix of A w.r.t. the basis $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$? What about the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$?

Solution: Given $A(e_1) = \begin{pmatrix} 1\\1 \end{pmatrix}, \quad A(e_2) = \begin{pmatrix} 1\\1 \end{pmatrix}. \tag{1}$ To find the matrix w.r.t $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$, we need to compute $A\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right)$ and $A\left(\begin{bmatrix} 1\\-1 \end{bmatrix} \right)$. Observe that $\begin{bmatrix} 1\\1 \end{bmatrix} = e_1 + e_2$. So, $A\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right) = A(e_1 + e_2) = A(e_1) + A(e_2) = \begin{bmatrix} 2\\2 \end{bmatrix}$. Similarly, $A\left(\begin{bmatrix} 1\\-1 \end{bmatrix} \right) = A(e_1 - e_2) = \begin{bmatrix} 0\\0 \end{bmatrix}$. So, matrix of A w.r.t. the basis $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$ is $\begin{bmatrix} 2 & 0\\2 & 0 \end{bmatrix}$. Along similar lines, matrix of A w.r.t. the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ is $\begin{bmatrix} 1 & 2\\1 & 2 \end{bmatrix}$.

2. If the matrix of a linear transformation w.r.t basis $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is $\begin{bmatrix} 0 & 1 & 1\\1 & 0 & -1\\-1 & -1 & 0 \end{bmatrix}$, what is the matrix of A w.r.t $\left\{ \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$

Solution: Homework!

Solution:

Solution:

3. (a) What matrix M transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \& \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} r \\ t \end{bmatrix} \& \begin{bmatrix} s \\ u \end{bmatrix}$?

$$M = \begin{bmatrix} r & s \\ t & u \end{bmatrix}$$
(2)

(b) What matrix N transforms $\begin{bmatrix} a \\ c \end{bmatrix} \& \begin{bmatrix} b \\ d \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \& \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

$$N = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \tag{3}$$

(c) What condition on a, b, c, d makes the above transformation impossible?

Solution: ad = bc makes N impossible.

(d) How to combine M, N to yield a matrix that transforms $\begin{bmatrix} a \\ c \end{bmatrix}$ to $\begin{bmatrix} r \\ t \end{bmatrix}$ and $\begin{bmatrix} b \\ d \end{bmatrix}$ to $\begin{bmatrix} s \\ u \end{bmatrix}$? Work out the resulting transformation for the special case where a = 2, b = 1, c = 5, d = 3, r = 1, s = 0, t = 1, u = 2.

Solution:

$$MN = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}$$
Specific example:
$$MN = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -1 \\ -7 & 3 \end{bmatrix}$$
(4)

- 4. Suppose matrix Q satisfies $Q^T Q = I$ then,
 - (a) Columns of Q are <u>"orthonormal"</u>
 - (b) Relation between m and n is $\underline{"m \ge n"}$
 - (c) Rank of Q is <u>"n"</u>
 - (d) What is the solution \hat{x} to Qx = b? " $\hat{x} = Q^T b$ "
 - (e) Is $P = QQ^T$ a projection matrix?

Solution: P is a projection if P is symmetric & $P^2 = P$. We check these properties for $P = QQ^T$ below. $P^T = (QQ^T) = (Q^T)^T Q^T = QQ^T = P$. Further, $P^2 = Q(Q^TQ)Q^T = QQ^T = P$. Hence, P is a projection matrix.

(f) Is $P = QQ^T$ singular if Q is a $m \times n$ matrix with m > n?

Solution: Yes. Q, Q^T have rank n & hence rank(P) = n, but P is a $m \times m$ matrix with m > n. Hence, P is not full rank, implying singularity.

(g) Let $A = \begin{bmatrix} 0.1 & 0.5 & 1 \\ 0.7 & 0.5 & 1 \\ 0.1 & -0.5 & 1 \\ 0.7 & -0.5 & 1 \end{bmatrix}$ Check if the first and second columns of A form an orthonormal set of

vectors. Use Gram-Schmidt algorithm to convert A into an orthogonal matrix.

Solution: The first two columns, say q_1 and q_2 , of A are orthonormal. We apply Gram-Schmidt algorithm to the third column of A, say a_3 , to arrive at a vector q_3 that is of unit length and orthogonal to q_1 and q_2 . Let $A_3 = a_3 - (q_1^T \cdot a_3)q_1 - (q_2^T \cdot a_3)q_2$ Notice that $q_2^T a_3 = 0, q_1^T a_3 = 1.6$ and hence, we obtain $A_3 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - 1.6 \begin{pmatrix} 0.1\\0.7\\0.1\\0.7 \end{pmatrix} = \begin{pmatrix} 0.84\\-0.12\\0.84\\-0.12 \end{pmatrix}.$

Normalizing,
$$q_3 = \frac{A_3}{||A_3||} = \begin{pmatrix} 0.7 \\ -0.1 \\ 0.7 \\ -0.1 \end{pmatrix}$$
.