Linear Algebra and Random Processes Tutorial – 3

Date: 16/9/2017

1. Let $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ denote the standard basis vectors in \mathbb{R}^2 . $\mathcal{B}' = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ 2 \end{pmatrix} \right\}$. For any vector $v \in \mathbb{R}^2$, let $v_{\mathbb{B}}$, $v_{\mathbb{B}'}$ denote its representation using \mathbb{B} , \mathbb{B}' , respectively. Find an invertible matrix A such that

$$v_{\mathbb{B}'} = Av_{\mathbb{B}}.$$

Solution:

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

2. Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -7x - 15y \\ 6x + 12y \end{bmatrix}$. (a) Find a basis \mathcal{B}' , such that $[T]_{\mathcal{B}'} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Solution: Let $\mathcal{B}' = \{b_1, b_2\}$, where $b_1 = \begin{bmatrix} b_{11} \\ b_{12} \end{bmatrix}$, $b_2 = \begin{bmatrix} b_{21} \\ b_{22} \end{bmatrix}$. From $[T]_{\mathcal{B}'}$, we have $T(b_1) = 2b_1$, $T(b_2) = 3b_2$ From $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -7x - 15y \\ 6x + 12y \end{bmatrix} \& T(b_1) = 2b_1$, we get $-7b_{11} - 15b_{12} = 2b_{11} \Longrightarrow -9b_{11} - 15b_{12} = 0 \Longrightarrow b_{11} = -\frac{5}{3}b_{12}$ and b_{12} is free. Setting $b_{12} = 6$, we get $b_{11} = -10$. In a similar fashion, $-7b_{21} - 15b_{22} = 3b_{21} \Longrightarrow -10b_{21} - 15b_{22} = 0 \Longrightarrow b_{21} = -\frac{3}{2}b_{22}$. Setting $b_{22} = -4$, we get $b_{21} = 6$. So, $\mathcal{B}' = \left\{ \begin{bmatrix} -10 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -4 \end{bmatrix} \right\}$.

(b) Find an invertible S, such that $[T]_{\mathcal{B}'} = S^{-1} [T]_{\mathcal{B}} S$, where \mathcal{B} is the standard basis.

Solution:
$$S = \begin{bmatrix} -10 & 6 \\ 6 & -4 \end{bmatrix}$$

3. Recall that the trace of the matrix A is the sum of its diagonal entries. Suppose A is similar to B. Then, trace (A) = trace(B).

Solution: Notice that trace (AB) = trace (BA) for any $m \times n$ matrix A and $n \times m$ matrix B because

trace
$$(AB) = \sum_{i} [AB]_{ii} = \sum_{i} \sum_{k} a_{ik} b_{ki} = \sum_{k} \sum_{i} b_{ki} a_{ik} = \sum_{k} [BA]_{kk} = \text{trace}(BA).$$

Suppose that $A = C^{-1}BC$. Then,

trace
$$(A)$$
 = trace $(C^{-1}BC)$ = trace (BCC^{-1}) = trace (B) .

- 4. Let P be a projection matrix onto a r-dimensional subspace of \mathbb{R}^n . Let $\{v_1, \ldots, v_r\}$ be the basis for column-space of P & $\{u_1, \ldots, u_{n-r}\}$ is a basis for null-space of P.
 - (a) Show that $\mathcal{B} = \{v_1 \dots v_r, u_1 \dots u_{n-r}\}$ is a basis for \mathbb{R}^n ?

Solution: Suppose

$$\sum_{i=1}^{r} c_i v_i + \sum_{j=1}^{n-r} d_j u_j = 0$$
(1)

$$\implies \sum_{i=1}^{r} c_i P v_i + \sum_{j=1}^{n-r} d_j P u_j = 0$$
⁽²⁾

Notice that $u_j \in \mathcal{N}(P) \implies Pu_j = 0$

Further, $v_i \in \mathcal{C}(P)$ $\implies v_i = Px_i \text{ for some } x_i$ $\implies Pv_i = P^2x_i = Px_i = v_i$

Plugging these into Equation (2), we get

$$\sum_{i=1}^{r} c_i v_i = 0$$

So, $c_i = 0, i = 1, \dots, r$

From Equation (1), we get $\sum_{j=1}^{n-r} d_j u_j = 0 \implies d_j = 0, \forall j$ Hence, $\mathcal{B} = \{v_1 \dots v_r, u_1 \dots u_{n-r}\}$ is a linearly independent set, implying \mathcal{B} is a basis for \mathbb{R}^n as set has n elements.

(b) What is the matrix of P w.r.t \mathcal{B} ?

Solution: $\begin{bmatrix} P \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$

(c) Suppose P_1 and P_2 are two $n \times n$ projection matrices of rank r. Show that they are similar.

Solution: From part(b), we know that there exist a basis \mathcal{B} , such that

$$\begin{bmatrix} P_1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

& a possible different basis $\mathcal{B}',$ such that

$$\begin{bmatrix} P_2 \end{bmatrix}_{\mathcal{B}'} = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

Let

$$P = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

Then,

$$P_{1} = S_{1}^{-1} P S_{1}$$

$$P = S_{2}^{-1} P_{2} S_{2}$$
So,
$$P_{1} = S_{1}^{-1} S_{2}^{-1} P_{2} S_{2} S_{1}$$

$$= (S_{2} S_{1})^{-1} P_{2} S_{2} S_{1}$$

 S_2S_1 is invertible and hence P_1 is similar to P_2 .