CS6046: Multi-armed bandits Homework - 1 Course Instructor : Prashanth L.A. Due : Feb-12, 2018

Theory exercises

- 1. Suppose X_1, X_2 are σ_1 and σ_2 -subgaussian random variables (r.v.s), respectively. (2+1 marks)
 - (a) Show that $X_1 + X_2$ is $\sigma_1 + \sigma_2$ -subgaussian.
 - (b) If X_1 and X_2 are independent, then $X_1 + X_2$ is $\sqrt{\sigma_1^2 + \sigma_2^2}$ -subgaussian.
- 2. True or False? (Justify your answer)
 - (a) A r.v. X distributed as $N(\mu, \sigma^2)$ for some $\mu, \sigma > 0$ is subgaussian.
 - (b) A r.v. X distributed as Unif[5, 10] is subgaussian.
 - (c) Consider a r.v. X satisfying $\mathbb{E}(\exp(\lambda X)) \leq \exp\left(\frac{\lambda^2 \sigma^2}{2} + \lambda \mu\right)$ for any $\lambda \in \mathbb{R}$. Then, $EX = \mu$.
 - (d) For the r.v. X as in the question above, $Var(X) = \sigma^2$.
- 3. For a K-armed stochastic bandit problem, with $m = n^{2/3} (\log n)^{1/3}$, show that the regret R_n of the explore-then-commit (ETC) algorithm satisfies

$$R_n \le c n^{2/3} (K \log n)^{1/3},$$

for some universal constant c.

4. Consider the following bandit algorithm:

ϵ -greedy algorithm

For t = 1, 2, ..., n, **repeat**

- (1) Let it be the arm with the highest sample mean so far, i.e.,
 it = arg max µk(t 1), where µk(t 1) is the average of rewards obtained from arm k upto time t.
- (2) With probability $1 \epsilon_t$, play arm i_t and with probability ϵ_t , play a random arm.

For a two-armed bandit problem, show that the regret R_n incurred by the ϵ -greedy algorithm, with $\epsilon_t = 1/t^{1/3}$, satisfies

$$R_n \le c n^{2/3} (\log n)^{1/3},$$

for some universal constant c.

5. Consider the following game that proceeds over n rounds: In each round $t \in \{1, ..., n\}$, you choose either to play or do nothing. If you do nothing, then your reward is $X_t = 0$. If you play, then your reward is $X_t = 1$ with probability p and $X_t = -1$ otherwise. You do not know p and we will assume it could take any value in [0, 1].

Answer the following:

(1+1+2+2+2 marks)

(5 marks)

(5 marks)

ian.

(1+1+1.5+1.5 marks)

- (a) Formulate the game above as a stochastic bandit problem with horizon n.
- (b) Write down the expression for the regret incurred by any algorithm \mathcal{A} .
- (c) Describe an optimal way of choosing actions, i.e., the best algorithm, when p is known.
- (d) For the unknown p case, apply ETC algorithm to the bandit problem formulated above and derive a bound on its regret.
- (e) Does exploiting the fact that the reward is zero for "doing nothing" lead to an improved regret bound for ETC?

Simulation exercise

Consider a two-armed bandit problem, where each arm's distribution is Bernoulli. Consider the following three problem variants, with respective Bernoulli distribution parameters specified for each arm:

Problem	Arm 1	Arm 2
P1	0.9	0.6
P2	0.9	0.8
P3	0.55	0.45

Write a program (in your favorite language) to simulate each of the above bandit problems. In particular, do the following for each problem instance: (10 marks)

- 1. Choose the horizon n as 10000.
- 2. For each algorithm, repeat the experiment 100 times.
- 3. Store the number of times an algorithm plays the optimal arm, for each round t = 1, ..., n.
- 4. Store the regret in each round $m = 1, \ldots, n$.
- 5. Plot the percentage of optimal arm played and regret against the rounds t = 1, ..., n.
- 6. For each plot, add standard error bars.

Do the above for the following bandit algorithms:

- The explore-then-commit (ETC) algorithm with exploration parameter *m* chosen optimally so that the gap-dependent regret is minimum (this choice for *m* would require information about underlying gap).
- The ETC algorithm with a heuristic choice for exploration parameter *m*. Try different values for *m* and summarize your findings, say by tabulating regret for different *m*.

Interpret the numerical results and submit your conclusions. In particular, discuss the following: (2+3 marks)

1. Explain the results obtained for ETC with optimal m and correlate the results to the theoretical findings.

2. Explain the results obtained for ETC with a heuristic choice for m. In particular, how does ETC with a m that is far from the optimal, perform?

Here is what you have to submit:

Theory exercises (Q1-5): Hand-written (or typed) answer with concrete justification.

Simulation exercise: Include the following:

- Source code, preferably one that is readable with some comments;
- Plots/tabulated results in a document (or you could submit printouts of plots); and
- Discussion of the results either hand-written or typed-up.