
 

Finite horizon Markov decision processes MPPs

Lecture T

Example Machine replacement

A problem over Al stagy

e.g think of maintaining a bus with each stage

corresponding to a month

The machine can be in one of the n states i.e
1 n

7 A Dont confuse

perfect worst state with stage
condition condition

Operating lost g i in state i

ga g 2 I Egan

Actions Repair or Do nothing
machete becomes machine gets
new i e goes to

progressively worsestole1

Stochastic system

Pig probability that the machine transitions fromstate to
when you do nothing

E Pij 1 Pij so if jcitransition probabilities

If you repair the machine transition to stale 1 stay there
for one stage



Transition diagram

Repair Do nothing

1µW
p I R

with
Probability

wit
i

i

Pig 0 if jci

Oh repair machine goes to state I remains there

for one stage Repair cost is R

Goal choose actions so that the total cost

Cir cumulative cost over N stages is minimized

ligation
8h ripair'tcosts R

stg
stg i

stagesteel

Takeaway MDP has skates actions transition

probabilities costs



Another example
a

chess match

Fix opponent
Youplay2 games It II

If there is a tie then
O loss

sudden death phase where

youplay games one after he other

until a decisiveresult

Actione
timid I

w p p
w p I Pa

bold win w p Pw
hose w.p i p

Pa p

Game 1 I

Timid

H W

Sudden death Play bold



MDP framework

Let X denote the stale space
A denote the action space

X state in stye K X E X he currantstale

ax action that can be taken in state x a
ÉÉÉÉÉ

Transition probabilities

Pig
a PC Ka j Dei aka

State evolution satisfies Controlled Markov property

tÉI

rename

1
th th E tel

Petit E
Pig a

ga
i a j

state k if you are in
state i chose to take

Single stage cost action a to transitionto
state j thacostincurred is
GeCi a j



g

g i Terminal cost
final stage if state is i
then lost is g Ci

staff action
Policy Mo MN i

Me X A is a mapping from States to

Lecture 27 actions for stage K

Admissible policy MK i f Ali c setof feasible action
in

stale i

We say a policy IT Mo May is admissible

if Mic i E AkCi Hk 0 N 1 Hifk

Total cost Initial state slot actionchosen

E.EE Hi qEIIItgii
t

t
FGo Man terminal

Optimization objective

ÉÉft
t

min John
total costof policy it

H X of X
M HEAT
optimalpolicy I

setof admissible policies

Equip Tablo



Open us closed loop policies

closed loop policy T MoMi Man

Mi decision based on the state

Mi ai Xi ED

Open loop policy Fix the sequence of action beforehand

Chess match revisited

Possible
open loop policies

Policy it

he 1 Game 2 Prob win

Timid Timid PIP
Policy it Bold Bold p t2P I Pw

Policy IT Bold Timid Pupa PIC Pa

Policy it Timid Bold Pupa PIC Pa

Lets ignore it If 3Pw Pa then IT is better that

Which among Az Ty Ty is the best

Max P 3 2pm Pupa P 1 Pa

max pit2p 1 Pw Patt Popal P
PE t Pull Pw max Gpw Pa



If 2Pw Pa then IT Ty are better

Else Ita is better

set po o.us Pa 0.9 then

P.tl I Tqt gIswin
Closed loop policy Play timid if leading else play bold

To

Prob match win with IT

Pupa t Pw PwC Pa 1 Pw Pw

p a p t Pull Pw Pd

Tf Pw O 45 Pa 0.9 then Prob wining match with ite

0.53 2750 chanceof
winning match

Optimality principle

Let Mt Mt ME denote the optimal policy

Consider the tail sub problem

minJ fish gg
E Gn a t II Gk kind'd D

optingette La
The policy Mt Ma is optimal for the

Ni stage problem in 4 RoofiseesectffBertsekas DPOC Vol I



DP algorithm

Set J Xn g Gen Hants

For K N l 0
soiytpit.baI

are Able Eh Jk Kak ta tJ fIG min

Hartl

Idea Going backward Jo for DP algorithm is the optimal cost
i e JAFF

Applying DP algorithm to machine replacement example

J i o no terminal cost

in Jai minCEYE.IT1IID
Lecture 3

DP algorithm finds the best policy

Gm H Kof X the function Jolt obtained at the

end of the DP algorithm coincides with the

optimal cost 5 1 747 1787

Proof For any admissible policy IT Mo MN i

let It Me MN 13



Jf Xk be the optimal cost of the tail sub problem

beginning in stage k in stale sea

TIG a min

HEY mm
8 a t III iMikita

H Kclaim Jit k Tk
mined by Dp algorithm

Eff with Pt
Bae one J Can g bi Tn fan Intl

Induction hypothesis Assure the clan for Kel i.e

TIF Axel Jae ice til

Tha min

Gk Hkt
Earn 9 m Jk t Mickle Xn

EI 9 ai Milt 3 it

min E CelticMicka At
MK Ttl

MEI
E Galan II gift missis sit 2J

Tiff optimality principle
for rigorousproof
checkSec 1.5of

Dpoc Vol I

Jfk ng E Gill Michio a JI ked
Al



É m E gala Micha ai t Jie ked

min

area
E 9k k ok ke

t Je 6kt
To infer this we med

Ik min FG.mn nEa Fha
MEB
B almostAbc

So JIC kick Jake
Endof PfwithinPf

Jo to Cto

Lecture 47
Examples

Linear system with quadratic cost

do a

x
OvenI Oven2 322

temperature
temperature

initial
temperature afteroven I afteroven 2

Goal to get x as close as possible to a

target temperature T

State
quotation

ke
l 4

k
t Lak k 0 I g

LE 10,1
Fearstheehotion fixed



Total cost aft aft x2 T
tobe minimized

Apply DP algorithm

Fidge J 2 g T 3Terminalcost

Goingback J lx main aft 5,61s
on stage

main Capt 5 4 2724 297

Ing fait 11 2724 29 77

Linear
in Mt actingX1

sites 4 2

51 quadratic
in X

Check

Moho 1 272 T 1 25 0 linear
1 22 1 1 212 in no

551 C 3 I exuadratic
in To



Adding randommen to ovens

gydatic A 7kt 1272kt 49kt Wk k o I

t
Ift zero mean r.v.iit.int

bounded variance

e.g N 10,02

Applying DP algorithm

Jk nai Ew aft 1 2 x.taa.tw T

mi att 7 Dx tha T

2
7 1 2 x La T

Ew

main aft 1 2 4 29 T t Ew

Minimizing RHS above leads to the same action as in

the deterministic setting i e

nite LCT.IE

Chas match revisited flat tire

Consider an extension to N games
timid Pa bold Pw Pa Pw



Playere play N games 4
enter sudden death if the score is tied

State net score e.g Co 1 stake 1

Apply DP algorithm

Jefe max Psa 5kt xx 14 1175 6ED

we are
player tiniL play
rewards

at nipping
D Pw T.us DtC PwIIafk D

bold play

a ex a'if
0 if XµcO

it is better to play bold when

Ppg 7 It K Tat k
l inferred

7 1 1 Ta Ca 17 from

Given that we have Jin specified we can go
back calculate 5µs



an Jan Best play

1
does not matter

I

1 max E ÉÉpw ftp.pw
Pat tpa pw

Timid

0 Pw Bold

I P
Bold

O
does not

C 1
matter

For the 2 game match 7 we can figure the

optimal strategy by knowing J 2107

Ju lo max

PII.LI Ps.PwCPatt
PalPw

max Pw Pat 1 Pa Pw PwC Patt Pa Path Pw Pw

PwC Pat X P PwtX Pw Pw A play bold

As noted before one could choose PwC 0.5 still get

a better than 50 50 chance of winning the match if
PwC Pat f Pa Putt Pw Pw o s



Another example C Job scheduling
N job's to schedulegypped

got T time taken for ith job to complete

Ti ie a v.v Ti ie l N independent

Each job i has a reward Ri associated with it
So if job i finishes at time t then

the reward is Lt Ri L discountfactor
OC 221

Cumulative reward Sun of each job's reward

Goal schedule jobs to maximize cumulative reward

Interchange argumat to figure optimal schedule

L to i sike i s ikea sin i

L to in pika j i Ikea sin i

JEE L Riot 2thR athttiritatkttittipy.tn atrip

JEE L Riot 2thR at Rgtatkttittip.tn atrip

Schedule L is better than L if

I f ath tip ytattittipy 7 E 2tkittjpgyytattitt.jp

Uig tk Ti Tj are independent



F Ii Ri a

tea
ECIipy
I E att

From the optimal schedule works out as follows

Assign
µ

E LTiRi_ as the index for
l E dti job i i I N

Order µ Mm3 say May this Then

Optimal schedule a CD CM

index based optimal policy

rnrmrrudt

f ppocvo

Yet another example COptimal stopping

Asset selling

A technical note before arrest Selley

Discrete fine FIDPs can be formulated as

Xk f Xk Ak Wic
disturbance



EW could be i i d or could depend on Xk ak

Xk E infinite set

For the core when 71k f l n it is enough to

know Pig PC Ka j dei aka

Now to asset selling
Want to sell an asset

You get offer Wo w WH I

Assume We i id with some distributionfunction that has finite near

Action Sell the asset byaccepting the offer a

I don't sit wait for more offers a

Add a special state T to denote that the onetinsold

Kei flak ak we where

far an we t if fit aka or Ket

wk else

Work with rewards

God maximize E g Xn t Galka we
A

expectationover Wo wi way



grant an it ont't
o else

asset sold
yallN K

Fk k.dk we I.gga.Ik KIT 9 9

O else

I r 0 is the interest rate

Apply DP algorithm

T xx An if I T

o else
thin is key

if
one
tan't

Ic's maxce.II.EE gaD it t

o if KET

Let da EIIE.fi EI
Since we iid

Optimal policy threshold based policy non stationary thrift's
sell if Xk 2k if He L

both actions are
don't sell if xp Cha fine



LesUnderstanding the optimal policy

Suppose Lk 72kt Hk

For notational convenience let Vickie Effy
for KIT

DP algo in V notation is

Gin AN

Vic Gk max k Ekta

az

I 34Opted policy Mike
a

elle

Claim Le 2kt

Acceptoffer LiesEggo
42



To show 2k 2kt it is enough if we

establish that Y x Uke a Hx

For K N 1

Vn Fx max x Eli
max a Eff x Vata

For K N 2

Vita x max x Eggo
max x Effyd
Ya x

Proceeding similarly we got Vick ViaG Hk

Understanding the assetselling problem for large Re

Suppose w is a continuous positive valued v.v

with distribution Fw S density h

Vice w w it da su

g
rewrites he
maxi Lfof

dice else Val



Lk E ktw

f Vice w new dw

I am hlwldlw t whlwldw

Lk 44 Fulton t whew dw

2kt

É EE
From the above we can conclude

0 E Lk E Eg G

The sequence he is non increasing and bounded

became of A

Since Lia I die the sequence 2k
Converges as ks e say to some

I E o Ef



Lk 44 Fulton t whew dw

Taking ks a ineqn above we often

I
III whew aw

T.si eaw.wea
Calculate I

For very large N an approximately optimal policy
is

sell at Kic if Xp I
antellattkita

Simpler threshold bored policy
because the threshold I is the same for

all stages

End of Finite horizon MDPs


