
 
Lecture 21

TD learning Q learning with fall staterepresentation

ref Chapter 5 of NDP book

Full state representation

Suppose we want to estimate J i for a

given policy it for any if X

A full state algorithm aka tabular case maintain

an estimate Jt i if X updates thisestimate

incremataly using samples

TEC
i

i Lesmples update each entry

tÉ
Problem with this approach It doesn't scale e g on

large state spaced MDPs it may be computationally

infeasible e.g consider a MDPwin o states

or gone Go has 10170 States rough approx

On such problem we require parametric approximationof Ja



e g Ja Ci I O d i Of Rd
4 A dean

Parameter feature vector
linear function approximation

JIT

spacesS Io of

Recall Mean estimation

Want to estimate M EX you keep
getting samples X Xs peinerant
Tmt rmt Pm Xm rm

I T testimate stepsize sample from Prev
estimate

e g tan distribution
of FEI of x fr

Question of policy evaluation

want to estimate e If lion

Assume a SSP context



Fixed point equation for J
have raved he
dependence on action
in Siglestyecost

J Ci E gli F J CT

T
expectation over next state T

The action Ici is implicit
or E gliT J CT 5,12 0

Idea sample gli F Jaci update incrementally

Temporal difference

I Jmt i Juli pm gli T Jmi Juli

ftp.v.in expectation

this
the

highlighted above

plo
algorithm

NOTE I n Pig Ici
Eporal

difference

so gli T Juli is a proxy for

E lg it Ili T Jm i

forPÉptis equivalent to thin inthe apps
H in Sto

it tf

Ime Ci Juli t Pm CT Jm i Jm i

gli T Juli tali

Thnisthenoisefador
Wm i from thegeneralsto.italso



Monte Carlo Policy Evaluation

Ssp I n T

Fix proper policy it Simulate the SSP to

generate l trajectories

His random

ggg.fi in Trajectory 1

in initI 1
Actionsurig IT

it
in Trajectory l

Want to estimate Ja i E Egg imine is

T
This is the v.v whose

expectation we estimate

Ici grit it t glint int
for K l l

I total lost in Kth trajectory
Assume if i K

I i
te El Ici sampleaverage

ee



I can be incrementally computed by

Fili Juli pm Emei J is

with initial condition Joli7 0

pm could be a general stepsize
EPA Epix

og Pm 1m

Reusing trajectories

es EYE
io in a trajectory

ICising I
It D

ie in a sub trajectory.I i in t Flik
II in subtrajectoryof I

Ici D I CiH are dependent But we could

still use them both to estimate i

Ifi Jm ie Pm glia in t

T t g inn in Julie

This would estimate J with start state ik
4 1



Suppose you obtain
a trajectory

i i

Iq
in

T
i i

For estimating Jaci we could use entire trajectory rigid

to form Ici D glio.iptgli.int glint n

I could take the sub trajectory stostry at ik

ik ike l in

state

Ici k glia inapt glim in

To estimate Juli

First visit variant will use Fci

while Every visit variant will we

both J Ci D I Ci k

T t
are not independent



Lecture 22

Monte Carlo policy evaluation its relation to

temporal differences

Given a MDP trajectory ik in simulated

lying policy it
onesampleof EgI

June ie Julie Pm gli in t

glim in Julia

Aside If Patton then I in a Sample mean

Rewrite us as

Jmt ie Julie pm g ix ke t Julie Julie

g like sike Julies Juliet

glim in Jff Icin
Note Jm in D why I T

de del



TDColmesonlyde toupdate

Jm Cia Julia Pml dat da t day
L

where

de g ie ie t Julien Jaci lek in

Ittefliesbat Intestineof
Iliea simulated transition

X Can be done incrementally as

Note Going from ie in makes de available

June ie Julie Bm de

do this for l K N l

Remorf TDlo updates as

Jme ie Ju ik Pm dk
decadence d

TD o does not use all the temporal differences to

update its estimate Jm ik instead relics

on a l step fixed point equation i.e uses dk



TD o vs MC PE A bias variance tradeoff
perspective

Wip 1
cost I

Fix some Poli g IT

From i MDP always transitions to I under it

g Ci I 7 1

Want to estimate J i

MCPE Simulate trajectories starting in i

collect the total cost samples say 5cm

Flit Jem

Is this an unbiased estimate of Jaci Yes

TDlo Suppose through some other route an independent

simulation or some other approximate route we

have an estimate JCT



Then we can estimate Ili by

Jli JCT I

MCPE would never use JCI instead

rely on sample trajectories even att

With TD o we have a biased estimate Jci

of J Ci

MCPE estimation may suffer from high variance

es.p if N is small while a biased estimate

5C may do better

Bottomline TD o biased estimate

MCPE unbiased but possibly high variance

Is there a middle path
Yes TD X If 0,1

THO med the l step fixed pointequation to arrive at

its update rule I
J Ci E gli F J G III



2 stepfixed
why I step We could also go

2steps
joint

equation

Jit i E gli F gli F J F

J TEJ
Why the above we can have the following iterative algorithm

June ie Julie Pm g ik ik t glike lets

Julia Julie

Can extend this to Cle stops ie

Ja Ci E if I Him int Juliet isi

Tdstppxed point equation
Choice of l is arbitrary

TD X idea Form a weighted average of the
fixed point equations for different l

How do we combine

t.net GEEIIEIiiij

M
normalize since Etty weight for a particular l XECoD



We me the above fixed point equation to arrive

at the TDA update rule on Wednesday

The fixed point equation that serves as a basisfor TDA

t.cat EEEIiEii.j

M
normalize since Etty weight for a particular l XECoD

mid

Ci x ECEXE.glim.in ll xe E.x'Alice

C x ELE.g.EE glim.imn tE E.X X Julia

In Te
Mn em

THE
Simplifying the term CA

A X X E E glimian E x E E x glim.im
since l a Exam



l

Simplifying the term B

E eff x lie

E I X i t X X is

7 3 J iz 1
Added

subtracted

this

EL i J i X J is Eli

X2 J i3 5,1in 1

J i

E EX Jaime J in t Ili

Combining we obtain

a TJ Ci E E X glim in Talim Jatin
Jaci

Recall dm glim ime J lime Talim

so es O E Ethan



This really is a finite sum with a random of terms
because Hm N dm O since in T

Eg is valid became E dm 0 Am

How to turn into an iterative update rule

NOTE to typesetters Change variable in to something else

Iti Ici t Be E Mdm TDA
update
iteration

A short detour into sto approx update

ha ECHED
Want to findBfH x sit sit hesitko

te If petty
stochastic root find

RobbinsMonro
algorithm 1951

at Pt heat A f4D
lender regularity Conditions like Al Azbeford

If of a s as to

where I satisfies hat 0



Remarks

If 7 1 then becomes

It ik Ili t Be 5 dm

Jedi Ici t Be dot d day
TT Agung in't

MC PE scheme E TDC

If 7 0 then becomes aging 8 1

Jet i Tt Ci t Be gli i It in 5 1 id

T
TD o update iteration Io too

thinkin 191in in 5,1in 517

shin'Erryon5,1 7 5,17

O For any o c Xel the temporal difference dm

difference less important while updating the

estimate of the current state i i e the

effect of do is move pronounced in TDA

update as compared to dm m 1

Note X weighs temporal differences Not to be confusedwithdiscount 2



P.T O

IIF aviation

I Every visit us first visit

Suppose we have a trajectory io in

In his trajectory a given state say i may be
visited more than once

Cio in ie i

a
boman



Every visit Cia in Cia in
10 estimate Ifi

First visit Ci in to estimate Ci

Formally Suppose i ie visited M times in Cio in

and m mm are the time instate when

state i is visited

Then TD X would update as follows

I fi Ici Be Img Xm midm

why this

In TD X derivation if we consider some stale ice
instead of Io then the fixed point equation becomes

ie E zXmkdm 1 Ilie

First visit TDH would update as follows

Ie Cit Tecilt Be Emin
m

dm



Question Are these two variants equivalent
No

But both variants can be shown to converge
Erse 5.2
of NDPbook
idea SUN

II Off line TDA vs online TD X

Offline Simulate entire trajectory Cio in
and update in the end i e after all
temporal differences do d are available

Online Update after each transition i.e after
a single temporal difference term is available

Offline TD X Every visit variant

Juli Ici B E Em t dm

onetransit
Is

Online TD X Incrematal update
initidende

fifi in

On Cio i J Cio JoCio B do
orig constant
stepsize for
simplicityd d



ions iz

on Ci is J Cio J Cio B Xd
We d to update
estatesof rakefuber Ja Ci J i t p d

in tip
and so on

In general jon ik i ka

Te Cio I Cio t p Ide
Jee Ci JI Ci t p d dy

It ie I lie B da

Remark If a state i is visited multiple times then

offline and online TD X result in different
estimates

Example to illustrate the updates of offline onlineTDA

Suppose we have a trajectory 1,12 tt
Let Jo i 5012 be initial values 5,47 0



Offline TD X Denote estimates by If 1 I 12

State I's update Every visit style
1,2 I T I T

ICD T.li dotdXdp d
To 1 p 911,27 5,12 5047

X g 2 Dt Joli 5012 3 3,15
x2 gli T Joli

a to.gg
geasJfC2

Jo127tB g 2,17 50117 5012
from

X gli T Joe
2,15

On line TDA update Every visit style
On 1,2

5 D 5.43 13189275.1J 2 5012

P T O



On 12,1

J D J 1 P X g 2,17 5,117 5,127

52127 5,127 13 g 2,17 5,117 5,127

On I T 142,18

ICD Jae PC X getT Janiga
ÉÉenD

5,127 5,12 pxlg FF J.cn

3G 5312 Online TDA estimates

Compare this with 5 17,5 12

Tf we replace J J by Jo in online TD update

than 53 l 5,12 ICI 5 12

J Jo difference is 093

I Jo difference is 0 p2

5 Jo 093
or OCBC

If we take the step size P 70 as we update

then offline online TD update will get close



ÉgneeoftDiahighlevelsketunny
Read Jeff Tilt Pe H twit Flyin

Iff H is a contraction

ii E Wii 7 7 0 Elwell
E AT BAIN

iii 2 3 0 Epico standardstochasticappreciations

than JE EI Jas where H It

Want to show TD X update is like the

Sto ikr algo
condition Iii requires no effort e.g Pitt

Condition i we will dig deeper into TDA s

underlying mopping

Note We are doing policy evaluation any

TDA for a proper policy

isift
X I n

p Pig P Xiii

P X K Xo i EPIX K X I Xo
split useMarkovpropely

So Squaringmatrix P ie P2 would give two steptransitionprobabilities



Recall the fixed pointequation underbid TDA

iterators
Fli H ELE.tn ggCim im DtJ Cic ioiJ

9
normalize sinceEtty weight for a particular l

TECOB
T This is the TDA operator

J G t CI X E X pl'T
R

E Tilia in likely
transition probability
matrix underlying the

G is i x Helge i policy considered

What is the expectation oven in eq

i i is Ift

sample trajectory is i is in
To

Inside expectation is terns like

is glio i t J Ci

ii glio i t gli is Jilin f so on

each of these ferns get a weight i.e Asmat

Eq is like J H Jit where

He Gt l X Ey p'e TDA fixed
to pointequation



Ime all policiespropercase we showed earlier that there exist a

positive vector ad some Cf 0,1 sit

EIPij tail j I 5 i i s e sci

Or equivalently

11 Pill s e 11511g where 1.11 is

the weighted max norm

Hire HJ G t Ci x E x pl't

Want 11115 HJ'll I e 115 J 11g xx
Iced

H is a C contraction

attuning he noise conditions Eweli 74 0

ELIDA
are net I At Bls

one Caneinfer TD X iterate converges

asymptotically



If hold then the mopping

underlying TDA is a contraction

we can claim convergence using

U HJ HJ'll

LXt f x E x'pet't

ft 1 x x'pet's'll

feet E tell peg Jill

l X E tell J J'll since

ppl 5 5711
l a ells 5 ll EXl felt 115 5115
e 115 J'll

e e 115 5115
since Cf 0,1

So we have

UHT Ho'll E e 115 J'll



So the operator H underlying TDA update

is contractive

Assuming condition iii leading up to Eq above

hold we can claim

T 3 J a s as to

where It is the TD X iterate

Ixfordiscounted MDPs

Policy evaluation any TDA

sina.AM itEkrmmnsten
Approach
Do something

else
to reuse the TDA ideaforSSPs

Converta discounted MDP to

its equivalent SSP

Approach I Discounted MAP fix Some policy it

An MDP trajectory has no end i'no termination
State



Add a termination state from each state
add a prob 1 27 transition CLE 0,1

discountfactor

Simulation Toss a coin wimbish in each time instant

If heads continue simulation

Else end the trajectory do TDA update

aka
trajectory

io is in
s episode

termination see

P

M

N t v.v Geometric EA I
t

the this trajectory to do
TDA update

Draw back of this approach High variance

Example Just one state say I

Twist single stage cost in a v.v with mean O
variance r note cost does not depend

on state

Approach I add's termination state T



5,111 0 E
equivalent Ssp

From a trajectory we got single stage costs
N is a v.v

siggytsies 191 92 g

Variance of tea total
cost Éanpile

E g got g

fÉÉÉ
qq.EC gat g.Tln k PCn k

EE Ela 19 t get Pen k

Gi tear 0
I

É K2 P N k variance of

zx x
2 É K P Nak

Xi Nco 2

2 X Xabi depTEN
I

Vanaffenates
EZ k

Note 2 very close to I leads to big variance



Approach 2

I step fixed point egration Joli El gli T 25,57
2 step W J i El gli T ageF 225,15

TDA fixed point equation
for discounted case

FC l a ELE.XEigcim.im t2 alia

Repeating all the steps from the SSP TDA

derivation we obtain the following fixed point
relation for disconted Core

Julio El E 2X dm Jatin

where dm glim.im 2J Cim J im

can do this update from an intermediate state

it in the trajectory

JI Ci E Eilat dm Jolie

The TD x update would be



It ik I lie B É x dm

in comparison he SSP Ge

we have the 2 factorhere

Ques When to end trajectories To be answered

Lecture 25
Variance calculation for the single state MDP

Note We aren't adding the termination state

Trajectory Cio is is

Total Cost sample g 292 239 t

E3 i L

Variance Eff Ightga mean zero
Variance 2

2 222k
zK O

2

With SSP formulation we had a variance of II
which is 7 tha If



Approach 2
Offline TD cut the tragedy
at some random time I
Saudade for a finite Id of steps

approximate the discoated cost by

g 12g st t F get Jli

e g 4 200 2 0.8 Then after
200 steps he Untribution of costs to Janie

negligible
Online TD G

update value function estimates on every
sample transition

Update rule c very similar to the SSP case

Just patch in L

Festinate E Lm Gm

Tweet EC 02 Gm



Take surplus of this expectation
with a truncated trajectory

If I is large enough then intuitively

the contribution off.EE 2 Gm to

the total cost is negligible

E 2h8m is a good
Leo

enough approximation

Convergence analysis of PD X skipped
Check Prop 5.1 of NDP book for details

why Q factory
in a learning scenario

Policy evaluation J Ii E gli Titi t Jalil

To learn Ty sample for the riv
inside expectation

do a Sto ites algo

Control J'lil min E gli a i i

T
can I turn this fixedpoint relatin into a

Sto i ter algo



Q learning

Recall Q factors optimal cost

I starhy
in j

II
Q'fi a Pista gli a 5 83

Take action a in state i then follow the
optimal policy from state j onwards

Bellman equation 57 TI is equivalent to

i min Cia

Combing the two equations lead to the

following Q Bellman equation

Cia Piola gli a j min Cj b
b

origin to
Note Q is the unique solution of A

Suppose Q is a solution of A i.e

QC i a E Pig a gli a j twin Qfj
b



Then 0 07

This can be seen ung the fact that in the

unique solution of JETT

Q solves 50

main
QCia Solves the Bellmanequation SETI

i e i min Q Cia

5 is unique

main Q i a win Cia

Using min QCj b win QTj b in we

obtain a Q

So Ot is the unique solution

we did not require contraction in this argument

So if I TJ ha a unique solution then

at HOT also has a unique solutionM
in the operator underlying Q Bellmanequation

É



Value iterationluidwig Q factors 4tf
JqviYII.Ci.a

Piola glia s mainQzCj b

this is like One Hae starting with some Qo

A variation to ftp.tasi.at
Pij'as1g1 Ifg

Qfe Ci a l B Qtl i a t

Be Piola Hirai twin QeCjbD
p

VI requires knowledgeof
those transition probabilities

Sto iter algo version of the above

Qu i a l B Qoli a pelglia i twin Oli b

i sampled from Pig67

This in the Q learning algorithm

Note The stepsize could be iteration dependent ii e

Be Need Ep D Epico



Remark In principle Q learning is similar to TD o

Both are based on VI replace an

expectation by its sample

There is no straightforward variation of
Q learning that is in the spirit of TDA
No flea step Q Bell man equation

think about this

Éonvergence analysis of Q learning

Note Convergence of Q leaning Convergence of TD o

jut consider a specialMDP
with'fterible action Ili

in state i
Then Q BE I T's

Qe Cia 1 a Qrf i a t Pt gli a i win Qt
i b

T
action in next

sapledpt.fi stale

Assumptions

A1 E Be S Epics easyto satisfy eg FEE

A2 All policies are proper in the underlying ISP



Recall from previous chapter
Suppose Q learning update in compact notation is

ee X Pe Qe Bel HQetwe
Then if we show 77 0 Qo Qt

Wo Wen
Bi H is a contraction

B2 El We 17 1 0 E WE F EATBIIQ.IR

B Epee Epica
Then Qt Of which is the fixed pointofH

a s as 770

Main proof Theorem cones later

Define Ha i a Epi a gli a twin QCj.by
j b

Hia

Let Walia gli.at tminQfli b HQ f Cia

So Q learning update iteration is equivalent to

Onleamigupdate y
noise

Ofelia 1 a alias HiFi.at weci.aD
LE



Verifying conditions on noise

WeCi a f EYE where

7 gli a i twinQUID

E we i a 7 0 we is conditionally
givenQt

Zero mean

ECW i a 17 E Ye EY E

E E YE 7

Assuming single stage coat ga is bonded we have

a E Y 7 El gli.at tninQfib 7e Ea
abigcigsgj E K it max jib

j b

Ecw i.at 7e ekC1tmggxaffj b

So we have verified B2

B2 ie satisfied if we chose Be carefully
Ie Epee Epica

Onto Bi H is a contraction

All policies proper Éapositivevedores seater e

Such that



Pig
a j E e sci e from ssp

a fact chapter

Define A Q If my X logic
weighted
wax norm

T for Q values

S is givenby theclaim in SSP chapter

Need to show H Ha Ha'll I e la Q'll
for some C E 0,1

If this holds then BD is satisfied

Pf of need to show

Recall Ha i a Pista gli a twin Qf b

HQ i a Ha i a Epigeal ng GG b ng
a 18,57

Dial S E Pi Ca agin
Q j b win Q j b

j

E f Pi
Ca Myx IQ j b a j b

E Pista my IQG.biz
b1 scj

E E Piola g Kibby sci
j

Ild maxover j



I g Pi
a 11 Q Q'll 9157 110 a'll Pitaslid

FIFA's la a'll e sci
So we got

HQ i a Ha i a E HQ a'll e i

trails
era a'll

Ijaeals
ella a'll

Il Ha Ha'll e e la a'll

His a contraction wrt 11.11g

Thus we have

Theorem Q learning convergence

Al All policies proper Az Epee ERE ca

Az Sigle stye Cong is bonded i.e gap gli a j emo

User A1 AS Re Q learning algorithm
Converges a s it

QE Of a s as too



A variation when Al is not satisfied
Instead we have F a proper policy f

Improper policies have infinite cost

Even here I is the unique solution to the

Q Bellman copation this didn't require
Mabecontractive

Thstead we onlyused J Tff
isunique

Question Does Q learning converge in this case

Al Fa proper policy all improper policies
have infinite cost

Under A1 M in a monotone napping

ie QE Q HQ E Ha
t

Checkthis wig definitionof H
n W

Also check I

Hr Se f teCr Se E Herts e e notte

e vector of all ones



Theorem Ai t Epona Spica t

aKarni8
convergence

godgrgoriis
bonded style stage cost

bounded iterate ie SffalQtlicalka

Qe of a s as to my Theorm2

Hate Q
Geon previouswhere chapter

A Sufficient condition was slated offer theorem
2 in previous chapter

This Condition ensures boudednus of the iteratesQe3

is satisfied for Q learning

For details see prop 5.6 of NDP book

So he final chain is Q learning converges
under Ai t stepsize condition The

boundedness of iterates is implied



Lecture21

Q learning for discounted MPPs

Q Bellman equation in a discounted setting

Cia Piola gli a j 12min Cj b

f
b

todiscount

VI

Qe Cia Epijla gli a j 12min 9 12,6j

Q learning

Quiliil GBIQII.alPECgli.ci LninYI
sampled from Piola

Convergence of Q learning

Al Assume Igc E Mce

Ai Epa Ep

Then following the proof in the all policies are proper
core of Ssp On learning one can infer that



the underlying operator HQ is a d contraction

HQ i a Piya gli a 5 2min Q jib

11 Ha Ha'll I 21 Q Q'll

Tox norm 11916 1,1119171

So Under A1 A2 we have

Q Q w p I as too

Eamon

MCPE

ECE.gi.IR
trajectories to do policy evaluation

I i estimate of the value function expectedcoat

than J i Juli if
you see enough trajectories starting with i

I i sample average Lg Juli if we



see state i often in the trajectories

Same logic applies to TD and Q learning

With TD For J i Juli as to

we need to visit i i o in he trajectories

But sapling is using a fixed policy it

Compare with Q learning

Q Cia Of Cia

Here the algorithm in free to choose the
action a in couch state

The requirement for convergence

i
It 9107Q learnis A

magnify
whichactionto
choose j atsa

than select a arguing ila



I sell
argon 9 i a

Why do we need to take the route any Q factors

for finding an optimal policy
Policy evaluation we need J which in a functionof staff.ge

So why Q in Q Bellman equation
Or why not me J T J I make a sto iterativealgo

to find 5
Normal

Bargain
Flite min PigCa gli a j 2 j 0

Q
Bellman

warn
Q'Cia g Pi la gli a 8 2 gin jib

0

General Sto iter algo Want to estimate M E X

Take samples of X do an iterativeupdate

Eg is in the form Eli a

Ej gI 8

Casaple this
4 do an iterativeupdate

Ear is of Reform Flik mian El
since min is outside an iterativeago

is not possibly by just replacing
the expectation abovewith a

sample



Howtodoexpl oration

For Q learning to converge we require all

state action pairs to be visited frequently

Recall a learning update

Qu i a 1 Pt Qoli a gli a i 2minQCib

Question How to choose actions

I Greedy In state i choose argmin QfCi a at
a

tie instant t If 9,107 then

this choice makes perfect sense
However if It isn't close to Qt
then we need to explore

atra his table hats

update a good of times

for Q leaning to converge
a table



I E greedy
Fix E 0 usually a small number

At time instant t pick the greedy action w.p.CI E

pick anaction unif.at random W P E

Alternative Make t a function of iteration t say E

take Ey to us too i.e reduce

exploration as algorithmupdates

Tn state i at time instant t

action a is chosen w.p Haupert

sci.ae 4
I

sci Kian Miami Etf
prothibaenover thin is the prob of choosing action a
action in stki
T temperature controls the exploration

Note If R is very small the choice is

greedy



Policy evaluation The The Tite
a

exact

I Thnk g p
noise

Compare this with TD o

Te lik Ili t Be T i Wali Ili
x

noise

Running TDCo for some of steps Say M

Jm Jm in very close to J

Sang Im for policy improvement

there is no guarantee of improvement

Kondo Borkar

Actor critic algos
1999 SIAM J ControlOpt



Bandit angle to exploration

Naive setting

poles delay
distribute Iffoarddo

0f

u

poates I N
mean Mi Ma M iii Mi

opt route it ay XMi

for day 1,2 3

Pick a route Route
day

Observe a simple delay from distinction

Paray

On some day Sampleaverage I



How to pick rank on following day

pick a random route

Pick the route

with best sampleorg
Vote by arg may Ipick

In Q learning

i
picking a random action

ar g min Delia

E greedy

exploit operation
w p l e w p E


