





























Lechure-30 Markov chains taten to their limit Finite îrreducible Markor Chain =) recurrent & also positive recurrat Stationory distributions (aka skady-stek/invariat distribution) Def: For a Markov chain with t.p.m. P, the vector TT= (TT; iES) is called a stationary distribution if (i) π_i ?0 $\forall i$, $\Xi \pi_i = 1$ $E \pi n a distribution$ (ii) T=TP ET is stationary Remark. If the initial distribution is IT, then what is the distribution of Xn: TT P" $= TT P \cdot P^{n-1}$ - π Pⁿ⁻¹ dist of Xn = TT

Main result. Consider an irreducible Mortor chain
(a)
$$\exists$$
 a stationory distribution TT if and only if
some state is positive recurrent.
(i.e., if prime is involucible t transformed full-recurrent)
then ND entriency distribution TT ,
thun (i) every state is positive recurrent
(ii) $TT_1 = 1$ with $f_1 \ge 1 \times 1^2$
then $M_1 = E(T_1 | X_{21})$, with $T_1 \ge 1 \times 1^2$ is intered
(iii) $TT_1 = 1$ with $f_1 \ge 1 \times 1^2$
(iii) $TT_1 = 1$ with $f_1 \ge 1 \times 1^2$
(iii) $TT_1 = 1$ with $f_1 \ge 1 \times 1^2$
(iii) $TT_2 \ge 1 \times 1^2$
(iii) $TT_1 = 1 \times 1^2$ is unique.
Example
 $Two state DTWIC: TT_2 = 2TT_1 + (1-p)TT_2$
 $TT_2 = (1-2)TT_1 + BTT_2$ is $TT_1 + TT_2 = 1$
 $TT_1 + TT_2 = 1$
 $TT_2 = 1 - 2 \times 1^2 + 2 \times 1^2$





