
 

Chapter 1 Poisson processes

Ref Chapter 5 of V G Kulkarni's book
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Lecture 2

Poisson processes

Used to model counting events one at a time
e g births in a hospital

arrivals at a service system

calls made
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Shifted Poisson process

Let Nlt 1703 be PPG
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Stationary and independent increments
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Finite dimensional distributions
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EXAMPLE
Auto covariance function
et f NCH C303 be Ppi
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Alternate characterization of Poisson process
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Distribution of order statistics
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Lecture 5

Superposition of Poisson processes

7 Combining Poisson processes

Let Milt 1703,5 1 r be

independent Poisson processes with parameters
X Xr
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Example Telephone exchange
Calls arrive from 2 Sources

internationaldomestic

Each Source has Poisson arrivals 4
the rates vary
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Example
Customers arrive at a bank in 3 Categories
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category 3 steal money takes 6 min
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Splitting a Poisson process

Let Nlt 1 303 be PPG
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Hw Let NCE t7o3 be PPG
Consider a r way split wig
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Each event is clarified as type i w p pi in r
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EXAMPLE E
Geiger counter 7 counts radioactive particles
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The counter fails to count a particle w p 0.1
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A few problem to solve

5.1 A spaceship is controlledby 3 in deep computers
The ship can function as long as at least 2 of these
computers work Suppose the lifelines of these computers

are iid Exp X Assure all 3 computers are coolangatta
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T 3 time of occurrence of first event in LAICH 03



of

find joint distribution of CI Ta

fix Ct taos PPC Xp

JI IN CH f2o3 PP Ag 9 1 P indep

PCT E xD I e
XP

PCT E Iz I e
TUK

PCT Ex TaEXz
PCT EX PCI Exa
I e

P i e
U 2


