
Slot 9 EE736 End-term exam Prashanth L.A.

Roll. No: Name:

Total Marks: 33, Total Time: 150 mins

Instructions

1. The exam is divided into three sections: short answer questions in the first section, followed by two sections
with problems that require a detailed solution. For the first section, provide the final answer ONLY. For the
second and third sections, provide detailed answers showing all the necessary steps.

2. Use rough sheets for any calculations if necessary, and do not submit the rough sheets. Do not use a pencil
for writing the answers.

3. Assume standard data whenever you feel that the given data is insufficient. However, do quote your assump-
tions explicitly.

I Short answer questions (Answer any six)

Note: If more than six questions are answered, then the first six answers will be considered for evaluation.

1.1.5 For a twice continuously differentiable function f , let

θ∗ = arg min
θ

f(η) +∇f(η)T(θ − η) +
1

2α
‖η − θ‖2 , and

θ̃∗ = arg min
θ

f(η) +∇f(η)T(θ − η) +
1

2α
(θ − η)T∇2f(η)(θ − η).

Provide explicit expressions for θ∗ and θ̃∗.

2.1.5 Consider the following function:
f(x1, x2) = x21x2 + x32x1.

Provide a descent direction for f at (2, 1).

3.1.5 True or false: Let f : Rn → Rn be a contraction mapping with modulus α under the Euclidean norm. Let x∗

denote the fixed point of f . Then, f(x) ≤ x implies x∗ ≤ x. Here ≤ is element-wise.

4.1.5 Consider the function f(x) = x
2 +
√

1− x2 on the domain [−1, 1]. Find the maximum and minimum of this
function on the given domain.

5.1.5 Suppose x∗ minimizes the convex and L-smooth function f : Rd → R. If f(xn)
wp1→ f(x∗), what can be said

about xn?
(A) xn

wp1→ x∗ (B) Nothing (C) xn
p→x∗ (D) xn

d→x∗

Here
p→ and d→ denote convergence in probability and distribution, respectively.

6.1.5 Say whether each of the statements below is true or false for a discounted MDP.
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(a) There exists a policy π such that limk→∞ T
k
πJ < limk→∞ T

kJ for some vector J .

(b) If the single stage cost g(x, a, x′) is replaced by g′(x, a, x′) = g(x, a, x′)+10, ∀(x, a, x′), then the optimal
policy remains unaffected.

7.1.5 Consider a optimization of a convex and smooth function f using zeroth-order information. Consider the
following two settings: In the first setting, the function f is observable exacty (i.e., without noise) at any input
x. On the other hand, in the second setting, for any input x, one can obtain observations f̂(x) = f(x)+ε, where
ε is standard normal. Suppose we form a zeroth-order gradient estimate, say ∇̂f(·) using the simultaneous
perturbation method, and perform gradient descent, i.e., the following update (with obvious notation):

xt+1 = xt − at∇̂f(xt).

As a function of t specify bounds on E(f(xt)) − f(x∗), where x∗ is a minimum. Use the oh-notation, and
specify bounds for both settings mentioned above.

II. Medium answer problems (Answer any two)

Note: Provide detailed answers with proper justification. Further, if more than two questions are answered, then
the first two answers will be considered for evaluation.

1. A discounted MDP is specified below.

States {1, 2}, actions {a, b} in state 1, and {c, d} in state 2. The transition probabilities are

p11(a) = p12(a) = 0.5; p11(b) = 0.8, p12(b) = 0.2;

p21(c) = 0.4, p22(c) = 0.6; p21(d) = 0.7, p22(d) = 0.3;

The discount factor α = 0.9.

The time-invariant single-stage costs are as follows:

g(1, a, 1) = −9, g(1, a, 2) = −3, g(1, b, 1) = −4, g(1, b, 2) = −4,

g(2, c, 1) = −3, g(2, c, 2) = 7, g(2, d, 1) = −1, g(2, d, 2) = 10.

For each of the policies given below, find the expected discounted cumulative cost with start state 1.

(a)1.5 Policy π: π(1) = a, π(2) = c.

(b)1.5 Policy π̃: π̃(1) = b, π̃(2) = d.

(c)2 Is the optimal policy different from the two policies listed above? Why or why not?

2. Consider a machine that can be in one of the following two states: ‘good’ and ’bad’. If the machine is in a good
state in the current period, then it will transition to a bad state in the next period with probability (w.p.) p1. On
the other hand, a machine in ’bad’ state in the current period has to undergo maintenance, and transitions to
a ’good’ state in the next period w.p. p2, and remains in the ’bad’ state w.p. (1 − p2). Suppose the machine
in ’good’ state earns A INR (i.e., a cost of −A INR) per-period, while the per-period maintenance cost for a
machine in ’bad’ state is B INR.

Answer the following:
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(a)3 Formulate this problem in the infinite horizon discounted cost framework, with α ∈ (0, 1) denoting the
discount factor. What is the expected discounted cost of the machine for each possible initial state, i.e.,
’good’ and ’bad’?

(b)2 Suppose a new machine starts in the ’good’ state, and costs M INR. Compare the purchase cost to the
expected discounted cost to infer when it is optimal to a buy a new machine.

3.5 Consider a linear stochastic approximation algorithm with the following update iteration:

θn+1 = θn + a(n) (An+1θn + bn+1) ,

where a(n) is the step size, while An and bn are matrices and vectors that satisfy

E [An+1 | θ1, . . . , θn] = A,E [bn+1 | θ1, . . . , θn] = b,

where A is a negative-definite matrix. Moreover, E
[
‖(An −A)‖2

]
≤ C1 and E

[
‖bn − b‖2

]
≤ C2. Use the

Kushner-Clark lemma to establish asymptotic convergence of θn.

III. Long answer problems (Answer any two)

Note: Provide detailed answers with proper justification.
If more than two questions are answered, then the first two answers will be considered for evaluation.

1. Let f(x) = 1
p

∑p
i=1 fi(x), where fi is a L-smooth function, for i = 1, . . . , p and f is µ-strongly convex.

Suppose you are given gradient inputs from a zeroth-order oracle, i.e., for any i = 1, . . . , p and any x, an
optimization algorithm can obtain a (random) gradient estimate ∇̂fi(x) that satisfies

E
∥∥∥∇̂fi(x)−∇fi(x)

∥∥∥ ≤ C1δ
2, and E

∥∥∥∇̂fi(x)−∇fi(x)
∥∥∥2 ≤ C2

δ2
.

In the above, δ is a bias-variance tradeoff parameter, which an optimization algorithm gets to choose before
querying the oracle.

Answer the following:

(a)1 For minimizing f , write the update iteration of a SGD-type algorithm with stepsize denoted by αk and
iterate by xk. The gradient inputs are from the oracle defined above, and the SGD-type algorithm is
required to use only one of the fis in each update iteration.

(b)4 Analyze the non-asymptotic behavior of the algorithm from the part above. In particular, provide a bound
on E [f(xk+1)− f(x∗)]. Specify the SGD algorithm parameters αk and δk precisely. Here δk is the
bias-variance tradeoff parameter used for obtaining the gradient estimate.
Show your work in arriving at the bound.

(c)2 What would be the corresponding rate for a GD algorithm that uses gradients for each fi.

2. Consider the following problem, which is a variant of mean estimation. For a continuous random variable (r.v.)
X with cumulative distribution function F and for a given α ∈ (0, 1), define

qα(X) = F−1(α).

Notice that qα(X) is the median of the distribution of X when α = 0.5.
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Let {Xn}n≥1 be a independent sequence of r.v.s with common distribution F .

Answer the following:

(a)3 Derive a stochastic approximation algorithm for estimating qα(X) for a pre-specified α. Let qn denote
the iterate after observing samples X1, . . . , Xn. The algorithm should be iterative, i.e., given an estimate
qn at time instant n and a new sample Xn+1, the algorithm should perform an incremental update using
qn, Xn+1 to arrive at qn+1.

(b)3 Provide a sketch of the convergence analysis of the algorithm from part (a) above, in particular, to specify
suitable assumptions so that qn converges almost surely to qα(X)?

(c)2 Consider the following alternative observation model is as follows: At time instant n, the stochastic
approximation algorithm picks a threshold, say T , and the environment returns a boolean that indicates
whether Xn+1 < T or not. Discuss the changes to the stochastic approximation from the part above to
handle this threshold-based model.

3. Given a dataset Dn = {(ai, yi); i = 1, .., n} with ai ∈ Rd and yi ∈ R, consider the linear regression problem
of finding the minimizer x∗ of the following objective:

J(x) =
1

2n

n∑
i=1

(yi − xTai)2. (1)

Let Φ be the n× d matrix whose ith row is aTi . Assume Φ has full column rank. Let A = 1
nΦTΦ.

Answer the following:

(a)1 Find the gradient and Hessian of J at a given point x.

(b)1 Show that J is strongly-convex.

(c)1 Write down the update rule for a gradient descent (GD) algorithm to find the minimizer x∗ of J .

(d)3 Show that the gradient descent iterate, say xt, after t iterations, satisfies the following bounds:

‖xt − x∗‖2 ≤ (x0 − x∗)T(I − αA)2t(x0 − x∗), (2)

J(xt)− J(x∗) ≤ (x0 − x∗)T(I − αA)2tA(x0 − x∗), (3)

where α is the constant stepsize used by the GD algorithm.

(e)2 Let µ and L denote the smallest and largest eigenvalues of A. Using (2), establish the following bound
for GD:

‖xt − x∗‖2 ≤
(

1− µ

L

)2t
‖x0 − x∗‖2 .
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