Roll. No:

Name:

Total Marks: 13, Total Time: 45mins

Instructions

- 1. The quiz is divided into two sections: short answer questions, and problems that require a detailed solution. For the first section, provide the final answer for the first three questions and a short justification for the last question. For the second section, provide detailed answers showing all the necessary steps.
- 2. Use rough sheets for any calculations *if necessary*, and do not submit the rough sheets. Do not use a pencil for writing the answers.
- 3. Assume standard data whenever you feel that the given data is insufficient. However, do quote your assumptions explicitly.

I Short answer questions

1. True or False: Consider the function $f(x) = x + \frac{1}{x}$, for any $x \ge 1$. Then, there exists a $0 < \alpha < 1$ such that

$$|f(x) - f(y)| \le \alpha |x - y|, \forall x, y \ge 1.$$

2. Provide a bound using Oh-notation for the number of iterations n of a stochastic gradient algorithm so that $f(x_n) - f(x^*) \le \epsilon$ (with obvious notation) for an objective function that is (i) convex and smooth; and (ii) strongly-convex and smooth. Consider the case of unbiased and biased gradient information, with the latter having the usual $c_1\delta^2$ bias and c_2/δ^2 variance bounds. Ignore the constants and specify the dependence on ϵ alone.

Answer:

1

Function type	Unbiased case	Biased case
Convex and smooth		
Strongly-convex and smooth		

- 3. In a finite horizon MDP setting, suppose we have time-invariant state and action spaces. Consider a modified problem, where the terminal cost $g_N(x)$ is replaced by $g'_N(x) = g_N(x) + 10$. Let J_k and J'_k denote the *k*th stage functions in the DP algorithm for the original and modified problems. Then, $J_k(x) \le J'_k(x)$, for all x and k.
 - 4. Consider a function $H : \mathbb{R}^n \to \mathbb{R}^n$ that satisfies

$$||Hr - r^*|| \le \alpha \le ||r - r^*||,$$

for some $r * \in \mathbb{R}^n$ and $\alpha \in (0, 1)$. Here $\|\cdot\|$ is the ℓ_2 norm.

State whether the following statements are true or false:

1

1

- (a) r^* is the unique fixed point of H.
- (b) Value iteration $r_{k+1} = Hr_k$ would converge to r^* .

II. Problems that require a detailed solution (Answer any one)

Note: If more than one question is answered, then the first answer will be considered for evaluation.

- 1. An exam for the highly popular EE736 course is open book with two questions of M marks each. For each question, a student taking this exam can either (i) think and solve the problem; or (ii) search the internet for the solution. If he/she chooses to think, then he/she has a probability p_1 of finding the right solution approach, and therefore obtaining M/3 step marks. In the case when the right approach is found, the student has a probability p_2 to finish writing an answer that secures full M marks for that question. The corresponding probabilities for option (ii) are q_1 and q_2 , and the step marks being M/2. The passing marks for the exam is 40% of the total 2M marks. Assume $0 < q_1 < p_1 < 1$ and $p_1p_2 = q_1q_2$, and answer the following:
- (a) List all the open-loop policies for this problem.
 - (b) Calculate the probability of passing for each of these policies.
 - (c) Which is the best open loop policy?
 - (d) Is there a closed-loop policy (from a finite horizon MDP formulation) that does better than any of the open-loop policies? Provide an intuitive justification.
- 2. Let A be a $m \times d$ matrix with rows $a_1^{\mathsf{T}}, \ldots, a_m^{\mathsf{T}}$. For each $i = 1, \ldots, m, a_i$ is a $d \times 1$ -vector, representing the feature vector associated with example i in a ML training problem. Let $\mathbf{y}_1, \ldots, \mathbf{y}_p$ be $m \times 1$ vectors.

Assume A has full column rank.

Consider the following problem:

$$\min_{x} \alpha_1 \|Ax - \mathbf{y}_1\|^2 + \alpha_2 \|Ax - \mathbf{y}_2\|^2 + \ldots + \alpha_p \|Ax - \mathbf{y}_p\|^2,$$
(1)

for some positive scalars $\alpha_1, \ldots, \alpha_p$.

Answer the following:

- (a) Let x_i^* denote the solution to $\min_x ||Ax y_1||^2$. Express the solution x^* of (1) in terms of x_i^* and α_i , i = 1, ..., p.
- (b) Write a SGD type algorithm for solving (1).
- (c) Provide a finite time bound for the SGD iterate from the part above. This bound should quantify the rate of convergence of the SGD algorithm to x^* .

Note: A detailed proof is not necessary. You can use a non-asymptotic bound from the course notes. State the result precisely, with step-size choice and verify the assumptions for a theorem from the course textbook are met. Alternately, you can provide a proof sketch.

1	
3]
1.5]
1.5]

2

2

3