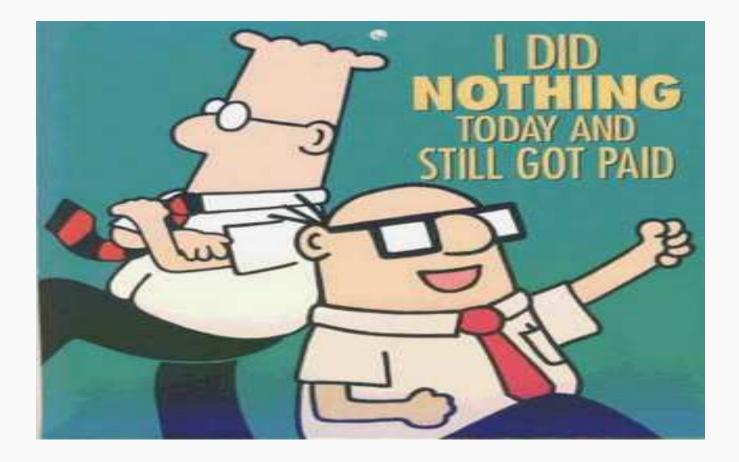
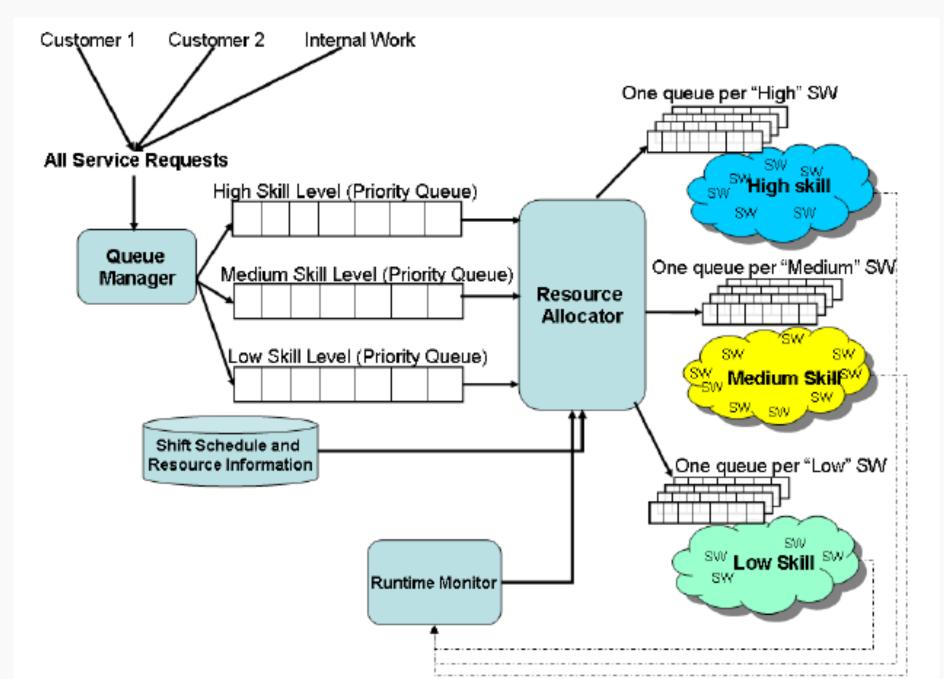
Motivation



Application I: Service System



4

Table 1: Workers *W*_{*i*,*j*}

Table 2: SLA targets $\gamma_{i,j}$

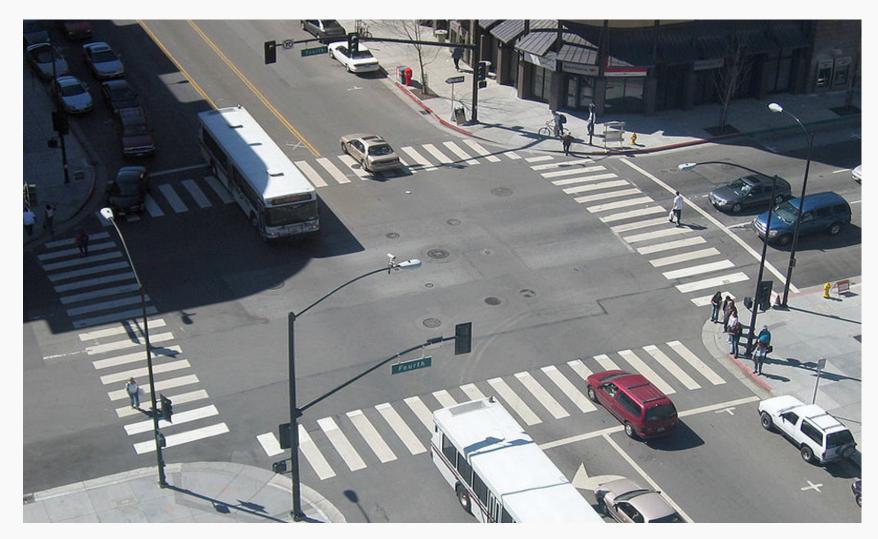
		Skill levels					r		
	Shift	High	Med	Low			Custon	ners	
	S1	1	3	7		Priority	Bossy Corp	Cool Inc	
	S2	0	5	2		P_1	4h	5h	
	S3	3	1	2		P_2	8h	12h	
						P_3	24h	48h	
						P_4	18h	144h	
$G = P_4 \qquad 18h \qquad 144h$ $\chi = P_4 \qquad \chi = P_4 \qquad R_4$									
the one nuin f(x)									
Aim: Find the optimal number of workers for each shift and of each									

skill level

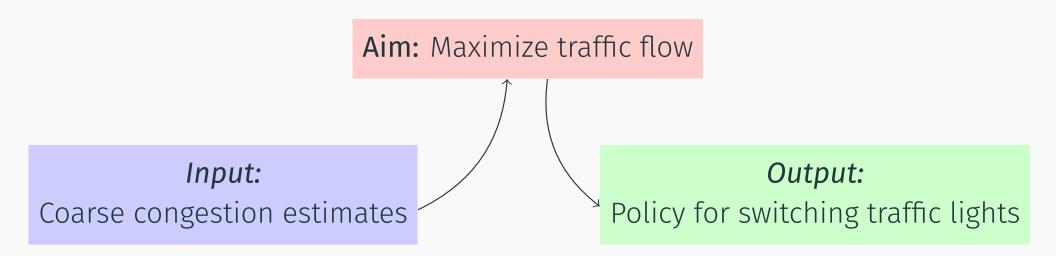
- that minimizes the labor cost and
- satisfies SLA requirements

Application II: Transportation

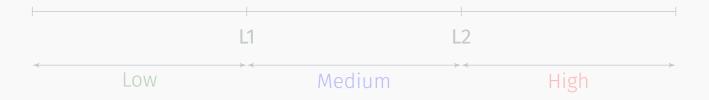
On a good day, the traffic is



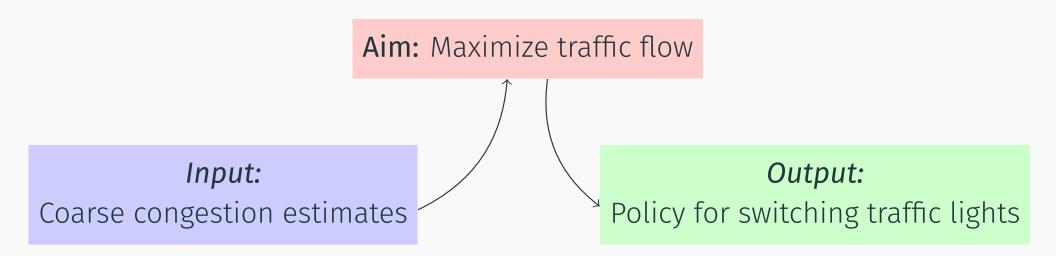
And on a bad day, it can be ...



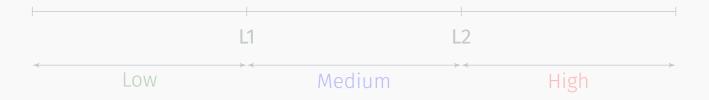
Input: Coarse congestion estimates Sensor loops at two points along the road



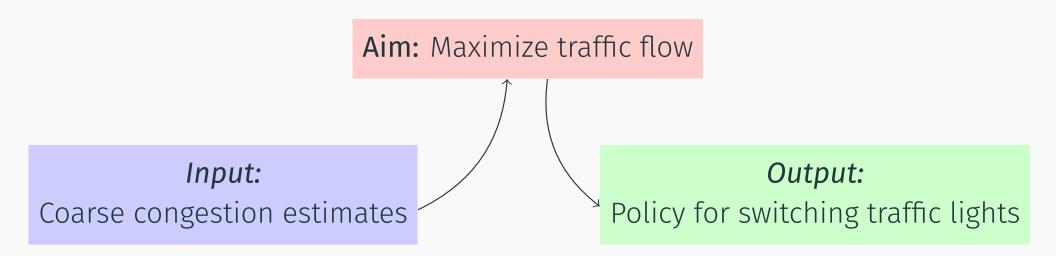
How to switch traffic lights given L1 and L2?



Input: Coarse congestion estimates Sensor loops at two points along the road

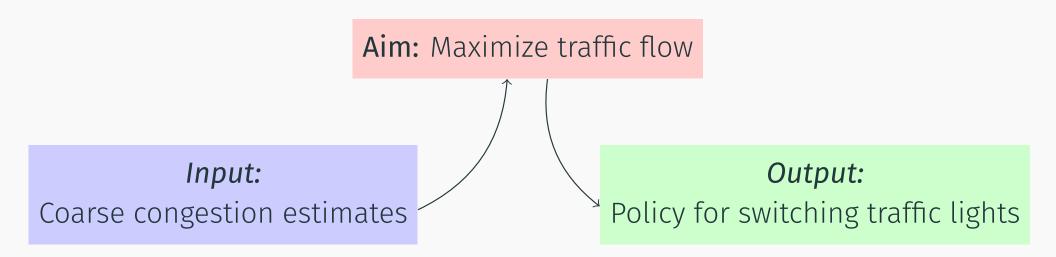


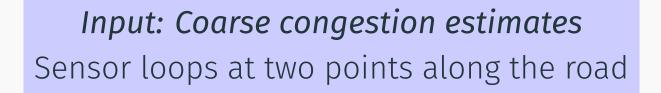
How to switch traffic lights given L1 and L2?



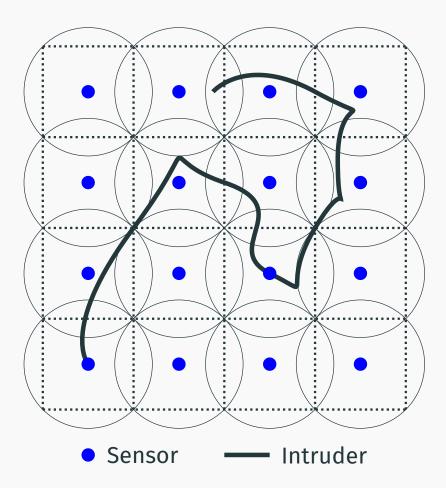
Input: Coarse congestion estimates Sensor loops at two points along the road

How to switch traffic lights given L1 and L2?





How to switch traffic lights given L1 and L2?



Aim:

- minimize the energy consumption of the sensors, while
- keeping tracking error to a minimum

Stochastic: noisy observations

Model-free: sample access to objective * gradients unavailable

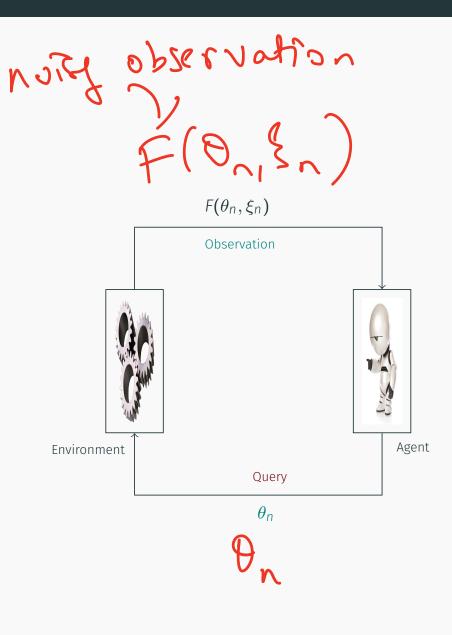
High-dimensional: brute-force search infeasible

Solution: Simultaneous perturbation methods

The framework

Basic optimization problem

А



im:
$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ f(\theta) \triangleq \mathbb{E}[F(\theta, \xi)] \right\}$$

 $\cdot f: \mathbb{R} \xrightarrow{} \mathbb{R}$ is the performance measure

- f *not* assumed to be convex
- $F(\theta, \xi)$ is the sample performance
- ξ is the noise factor that captures stochastic nature of the problem
- θ is the (vector) parameter of interest
- $\Theta \subseteq \mathbb{R}^{d}$ is the feasible region in which θ takes values.

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.
- Many simplifying assumptions are required.

A good alternative of modeling and analysis is "Simulation"

$$\theta_n \longrightarrow \text{Simulator} \longrightarrow f(\theta_n) + \xi_n$$

Figure 1: Simulation optimization

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.
- Many simplifying assumptions are required.

A good alternative of modeling and analysis is "Simulation"

$$\theta_n \longrightarrow \text{Simulator} \longrightarrow f(\theta_n) + \xi_n$$

Figure 1: Simulation optimization

Recall:
$$f(\theta) = \mathbb{E}[F(\theta, \xi)].$$

Two settings for noise:

Controlled noise ξ can be kept fixed between queries to obtain $F(\theta_1, \xi)$ and $F(\theta_2, \xi)$

Uncontrolled noise $F(\theta, \xi)$ can be obtained at any point, but ξ is not controllable

Recall:
$$f(\theta) = \mathbb{E}[F(\theta, \xi)].$$

Two settings for noise:

Controlled noise ξ can be kept fixed between queries to obtain $F(\theta_1, \xi)$ and $F(\theta_2, \xi)$ Uncontrolled noise $F(\theta, \xi)$ can be obtained at any point, but ξ is not controllable

Challenges in simulation optimization

Deterministic optimization problem

- focus is on
 search for
 better
 solutions
- Complete

 information
 about objective
 function *f*, esp.
 gradients

Stochastic optimization problem

- f cannot be obtained directly, but we are given sample access, i.e., $f(\theta) \equiv E_{\xi}[F(\theta, \xi)]$
- Each sample F(θ, ξ) is obtained from an expensive simulation experiment or a (real) field test
- focus is on both search and evaluation
 - Tradeoff between evaluating better vs. finding more candidate solutions

Challenge: to find $\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} f(\theta)$, given only noisy function evaluations.

Challenges in simulation optimization

Deterministic optimization problem

- focus is on
 search for
 better
 solutions
- Complete

 information
 about objective
 function *f*, esp.
 gradients

Stochastic optimization problem

- f cannot be obtained directly, but we are given sample access, i.e., $f(\theta) \equiv E_{\xi}[F(\theta, \xi)]$
- Each sample F(θ, ξ) is obtained from an expensive simulation experiment or a (real) field test
- focus is on both search and evaluation
 - Tradeoff between evaluating better vs. finding more candidate solutions

Challenge: to find $\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} f(\theta)$, given only noisy function evaluations.

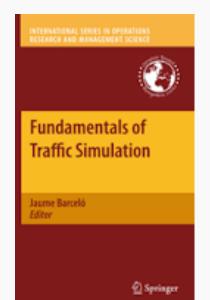
Some more applications

Energy Demand management

- Consumer demand, energy generation are uncertain.
- Objective is to minimize the difference.

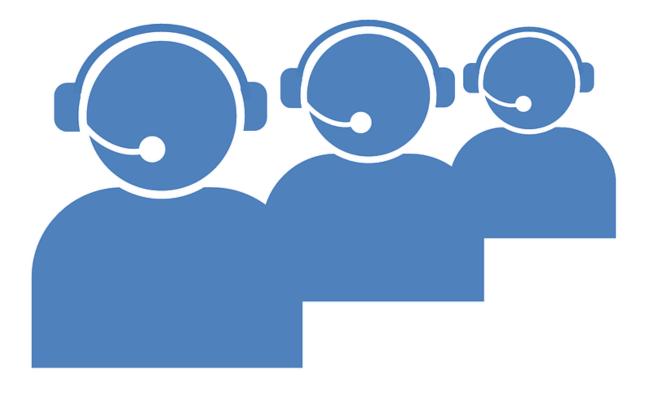
Transportation

- Car-following model
- route choice
- traffic assignment model



and some more..

Service systems (banks, restaurants, call centers, amusement parks)



and some more..

Transportation systems (airports: air space, runways, baggage, roads, queues)

Manufacturing	Semiconductor fab	Supply chains	
Networks	Finance	Insurance	
Education	Healthcare	Banking	
Mining	Oil & Gas	Call centers	
Automotive OEM	Aerospace	Retirement planning	

Some vendors...

aGPSS	Analytic solver	Analytica			
AnyLogic	FlexSim	ExtendSim Pro			
Arena	MedModel Opt Suite	Oracle Crystal Ball			
Pedestrian dynamics	Polaris	ProModel Opt Suite			
SLIM	Solver SDK Platform	Vanguard			
Tecnomatix	Simio	DiscoverSim			
¹ James J. Swain, "Simulation Software Survey — Simulation Takes Over: Reality is for Sissies," <i>OR/MS Today</i> , Oct 2017.					

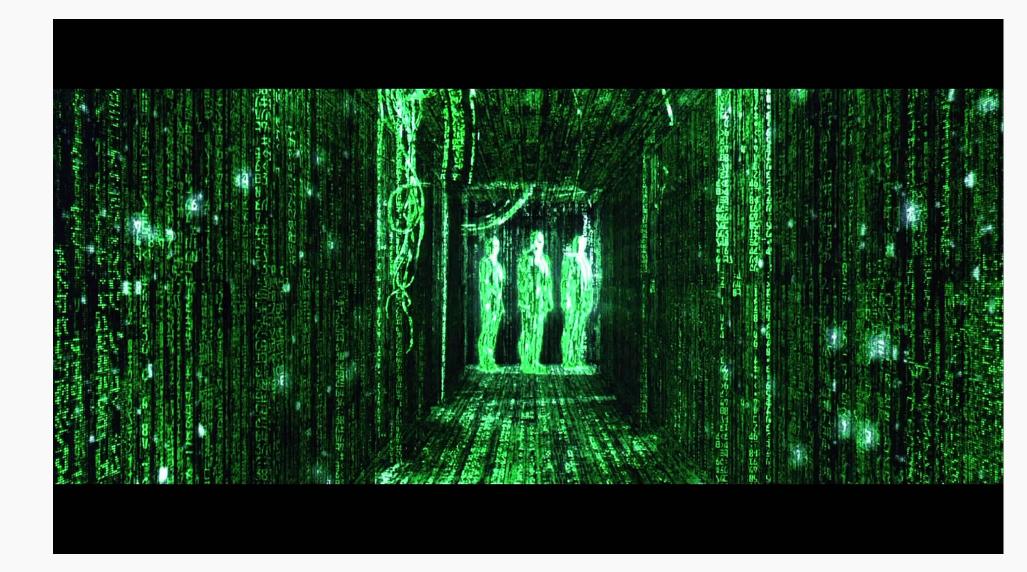
Success stories...

- Kroger (Edelman 2013 finalist, gradient-based) Kroger Uses Simulation-Optimization to Improve Pharmacy Inventory Management
 - www.youtube.com/watch?v=BNyDbBy-KYY (start at 0:45)
 - https://www.informs.org/About-INFORMS/News-Room/
 Press-Releases/Edelman-2013-Announcement

The Franz Edelman Award recognizes outstanding examples of innovative operations research and analytics that improves organizations and often change people's lives.

- Financial engineering
 - Monte Carlo simulation used widely on Wall Street.
 - Gradient estimates needed for hedging.
 - Hot research area: several research papers continue to be published

The Matrix has you..



Lecture 2:

First-order methods

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{1}$$

Suppose that

- G_n is an noisy estimate of the gradient $\nabla f(\theta_n)$, i.e., $\mathbb{E}(G_n) = \nabla f(\theta_n)$.
- $\{a_n\}$ are pre-determined step-sizes satisfying:

$$\sum_{n=1}^{\infty} a_n = \infty, \quad \sum_{n=1}^{\infty} a_n^2 < \infty$$

• iterates are stable: $\sup_{n} \|\theta_n\| < \infty$.

Theorem (Variant of Robbins Monro stochastic approximation) Letting $K := \{\theta \mid \nabla f(\theta) = 0\}$, we have

$$\theta_n \to K \text{ a.s. as } n \to \infty.$$
 21

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{1}$$

Suppose that

- G_n is an noisy estimate of the gradient $\nabla f(\theta_n)$, i.e., $\mathbb{E}(G_n) = \nabla f(\theta_n)$.
- $\{a_n\}$ are pre-determined step-sizes satisfying:

$$\sum_{n=1}^{\infty} a_n = \infty, \quad \sum_{n=1}^{\infty} a_n^2 < \infty$$

• iterates are stable: $\sup_{n} \|\theta_n\| < \infty$.

Theorem (Variant of Robbins Monro stochastic approximation) Letting $K := \{\theta \mid \nabla f(\theta) = 0\}$, we have

$$\theta_n \to K \text{ a.s. as } n \to \infty.$$
 21

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{1}$$

Suppose that

- G_n is an noisy estimate of the gradient $\nabla f(\theta_n)$, i.e., $\mathbb{E}(G_n) = \nabla f(\theta_n)$.
- $\{a_n\}$ are pre-determined step-sizes satisfying:

$$\sum_{n=1}^{\infty} a_n = \infty, \quad \sum_{n=1}^{\infty} a_n^2 < \infty$$

• iterates are stable: $\sup_{n} \|\theta_n\| < \infty$.

Theorem (Variant of Robbins Monro stochastic approximation) Letting $K := \{\theta \mid \nabla f(\theta) = 0\}$, we have

$$\theta_n \to K \text{ a.s. as } n \to \infty.$$
 21

$$\theta_{n+1} = \theta_n - a_n G_n.$$
(1)

Stepsize

Suppose that

- G_n is an **noisy** estimate of the gradient $\nabla f(\theta_n)$, i.e., $\mathbb{E}(G_n) = \nabla f(\theta_n)$. \neg unbiased for $f(\theta_n)$.
- $\{a_n\}$ are pre-determined step-sizes satisfying:

• iterates are stable: $\sup \|\theta_n\| < \infty$.

- \mathcal{F} is $S_n \circ o^n \mathcal{F}$ **Theorem (Variant of Robbins Monro stochastic approximation)** Letting $K := \{\theta \mid \nabla f(\theta) = 0\}$, we have

$$\theta_n \to K \text{ a.s. as } n \to \infty.$$
 21

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{2}$$

How to keep iterates stable?

Project θ_n onto a compact and convex set $\Theta \leftarrow$ Projected stochastic approximation

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{2}$$

How to estimate the gradient of *f* from samples?

$$\begin{array}{c} \theta_n \longrightarrow & \underset{o \not{}}{\text{Simulator}} \longrightarrow f(\theta_n) + \xi_n \\ & \overbrace{o \not{}} \\ & \overbrace{f(a_i) & } \\ & \overbrace{we or use u} \\ \\ \text{Simultaneous perturbation methods.} \end{array}$$

Stochastic approximation (SA) alphabet soup

- **FDSA** Finite difference stochastic approximation
- **SPSA** Simultaneous perturbation stochastic approximation
- **SFSA** Smoothed functional stochastic approximation
- **RDSA** Random direction stochastic approximation

$$\theta_{n+1} = \theta_n - a_n G_n. \tag{3}$$

- Q1) How to form G_n from function samples so that $G_n \approx \nabla f(\theta_n)$ Q2) Such a G_n - is it unbiased?
- Q3) Does θ_n converge to θ^* with such a G_n ?
- Q4) If answer is yes to above, what is the convergence rate?

Outline

Motivation The framework The framework

For Ssmall,

Finite - Lifferen ling

First-order methods

How are Gradients Estimated?

Analysis

f(0)~f(0+5)-f(0)

Commercials

Second-order methods

Applications

Perfect measurements ⇔ No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and One-sided gradient $g^{i} = \frac{1}{\delta} \left(f(\theta + \delta e_{i}) - f(\theta) \right), \quad i = 1, \dots, \text{ for all } f(\theta)$ -t(0) $f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\mathsf{T}} \nabla^2 f(\theta) e_i + O(\delta^3).$ Assume $f \in C^3$ Taylor-series expansion: Accuracy: $\|g - \nabla f(\theta)\|_2 = O(\delta)$.) uppose $\exists g = f = \eta = 0$ ($g = \nabla f(\theta) = 0$) 25Needs N + 1 queries.

Perfect measurements \Leftrightarrow No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and Wolfowitz, 1952):

$$g^i = \frac{1}{\delta} \left(f(\theta + \delta e_i) - f(\theta) \right), \quad i = 1, \dots, \Delta.$$

Assume $f \in C^3$ (three times to time by differential) Taylor-series expansion:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

Accuracy:
$$\|g - \nabla f(\theta)\|_2 = O(\delta)$$
.
Needs $\delta + 1$ queries.

FDSA with two-sided Differences

Improved estimate:

Balance
$$g^{i} = \frac{1}{2\delta} \left(f(\theta + \delta e_{i}) - f(\theta - \delta e_{i}) \right), \quad i = 1, \dots, dL$$

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

FDSA with two-sided Differences

Improved estimate:

$$g^{i} = \frac{1}{2\delta} \left(f(\theta + \delta e_{i}) - f(\theta - \delta e_{i}) \right), \quad i = 1, \dots, \mathbf{k}.$$

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

Accuracy:
$$\|g - \nabla f(\theta)\|_2 = O(\delta^2)$$
.
Needs 20 queries.

Improved estimate:

$$G^{i} = \frac{1}{2\delta} \left\{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \right\}, \quad i = 1, \dots, N.$$

0 I

-26 (0)+?

NJ.10

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^\top \nabla^2 f(\theta) e_i + O(\delta^3).$$

Assumption: $\mathbb{E}\left[\xi^{\pm}\right] = 0, \mathbb{E}\left[\left(\xi^{\pm}\right)\right] \leq \sigma^{2} < +\infty.$

 $\mathbb{E}\left[G^{i}\right] = g^{i}$. Hence

$$\|\mathbb{E}[G] - \nabla f(\theta)\|_2 = O(\delta^2) \cdot \leftarrow \mathsf{bias}$$

Improved estimate:

$$G^{i} = \frac{1}{2\delta} \left\{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \right\}, \quad i = 1, \dots, \mathcal{H}$$

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$
$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

Assumption: $\mathbb{E}\left[\xi^{\pm}\right] = 0, \mathbb{E}\left[(\xi^{\pm})\right] \leq \sigma^2 < +\infty.$

 $\mathbb{E}\left[G^{i}\right] = g^{i}$. Hence

$$\|\mathbb{E}[G] - \nabla f(\theta)\|_2 = O(\delta^2) \cdot \leftarrow \mathsf{bias}$$

Improved estimate:

$$G^{i} = \frac{1}{2\delta} \left\{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \right\}, \quad i = 1, \dots \mathcal{A}.$$

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

Assumption: $\mathbb{E}\left[\xi^{\pm}\right] = 0, \mathbb{E}\left[(\xi^{\pm})\right] \le \sigma^{2} < +\infty.$ $\mathbb{E}\left[G^{i}\right] = g^{i}.$ Hence $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}). \leftarrow \text{bias}$ $N(o, \gamma)$

Improved estimate:

$$G^{i} = \frac{1}{2\delta} \{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \}, \quad i = 1, \dots, \mathcal{A}.$$

9

+

Taylor-series expansions:

$$f(\theta + \delta e_i) = f(\theta) + \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$
$$f(\theta - \delta e_i) = f(\theta) - \delta \nabla f(\theta) e_i + \frac{\delta^2}{2} e_i^{\top} \nabla^2 f(\theta) e_i + O(\delta^3).$$

Assumption: $\mathbb{E}\left[\xi^{\pm}\right] = 0, \mathbb{E}\left[\left(\xi^{\pm}\right)\right] \leq \sigma^{2} < +\infty.$

 $\mathbb{E}\left[G^{i}\right] = g^{i}$. Hence

$$\|\mathbb{E}[G] - \nabla f(\theta)\|_2 = O(\delta^2) \cdot \longleftarrow \text{ bias}$$

f(0)+{

So far: with FDSA, we can get a gradient estimate $G^{i} = \frac{1}{2\delta} \{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \}, \quad i = 1, \dots, \bigstar$ with bias $O(\delta^{2})$

what is second moment: $\mathbb{E} \left| \|G\|_2^2 \right| = ?$

$$G_{i} = g_{i} + \frac{\xi_{i}^{+} - \xi_{i}^{-}}{2\delta}, \text{ hence } \mathbb{E}\left[G_{i}^{2}\right] = g_{i}^{2} + \frac{2\sigma^{2}}{4\delta^{2}} = g_{i}^{2} + \frac{\sigma^{2}}{2\delta^{2}} \text{ and}$$
$$\mathbb{E}\left[\|G\|_{2}^{2}\right] = \|g\|_{2}^{2} + O\left(\frac{N}{\delta^{2}}\right).$$

So far: with FDSA, we can get a gradient estimate $G^{i} = \frac{1}{2\delta} \{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \}, \quad i = 1, \dots, \mathcal{A} \text{ with}$ bias $O(\delta^{2})$

what is second moment: $\mathbb{E}\left[\|G\|_2^2\right] = ?$

$$G_i = g_i + \frac{\xi_i^+ - \xi_i^-}{2\delta} \text{, hence } \mathbb{E}\left[G_i^2\right] = g_i^2 + \frac{2\sigma^2}{4\delta^2} = g_i^2 + \frac{\sigma^2}{2\delta^2} \text{ and}$$
$$\mathbb{E}\left[\left\|G\right\|_2^2\right] = \left\|g\right\|_2^2 + O\left(\frac{N}{\delta^2}\right).$$

So far: with FDSA, we can get a gradient estimate $G^{i} = \frac{1}{2\delta} \{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \}, \quad i = 1, \dots, A$ with bias $O(\delta^{2})$

what is second moment: $\mathbb{E} \left| \|G\|_2^2 \right| = ?$

$$G_{i} = g_{i} + \frac{\xi_{i}^{+} - \xi_{i}^{-}}{2\delta} \text{, hence } \mathbb{E}\left[G_{i}^{2}\right] = g_{i}^{2} + \frac{2\sigma^{2}}{4\delta^{2}} = g_{i}^{2} + \frac{\sigma^{2}}{2\delta^{2}} \text{ and}$$
$$\mathbb{E}\left[\left\|G\right\|_{2}^{2}\right] = \left\|g\right\|_{2}^{2} + O\left(\frac{\delta}{\delta^{2}}\right).$$

$$||E_{h} - \nabla f|| = O(S^{2})$$

So far: with FDSA, we can get a gradient estimate

 $G^{i} = \frac{1}{2\delta} \left\{ f(\theta + \delta e_{i}) + \xi_{i}^{+} - (f(\theta - \delta e_{i}) + \xi_{i}^{-}) \right\}, \quad i = 1, \dots, \mathcal{A}, \text{ with}$ bias $O(\delta^2)$ what is second moment: $\mathbb{E}\left[\|G\|_2^2\right] = ?$ $\int G \subseteq \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$ $G_i = g_i + \frac{\xi_i^+ - \xi_i^-}{2\delta}$, hence $\mathbb{E}\left[G_i^2\right] = g_i^2 + \frac{2\sigma^2}{4\delta^2} = g_i^2 + \frac{\sigma^2}{2\delta^2}$ and $\mathbb{E}\left[\|G\|_{2}^{2}\right] = \|g\|_{2}^{2} + O\left(\frac{\delta \lambda}{\delta^{2}}\right) \cdot \int \operatorname{Vo}_{0}(G) = O\left(\frac{\lambda}{\delta^{2}}\right)$ becaye $E(\xi, -\xi, -\xi) = 0$ $EG_{i}^{2} = Eg_{i}^{2} + E\left(\frac{g_{i}}{g_{i}} - \frac{g_{i}}{g_{i}}\right) + 2g_{i}^{2} E\left(\frac{g_{i}}{g_{i}} - \frac{g_{i}}{g_{i}}\right)$ 28

FDSA perturbed dimensions one-at-a-time, leading to 2 queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements

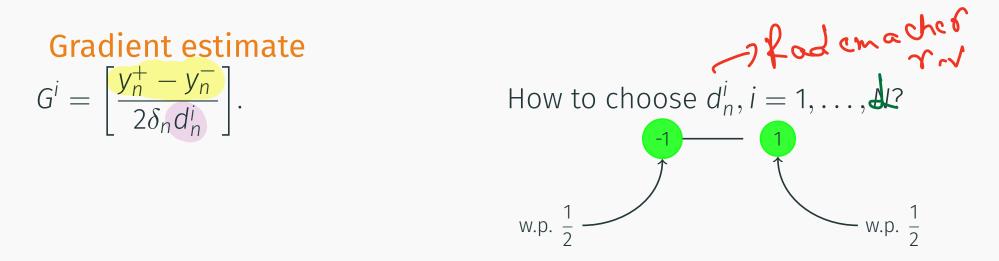
$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$$

Only 2-queries, regardless of N! $\mathbb{E}\left[G^{i}\right] = g^{i}!$ Hence, $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}).$ FDSA perturbed dimensions one-at-a-time, leading to 2 queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$$



Only 2-queries, regardless of \mathcal{L} $\mathbb{E}\left[G^{i}\right] = g^{i}!$ Hence, $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}).$ FDSA perturbed dimensions one-at-a-time, leading to 22 queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992) Function measurements $y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$

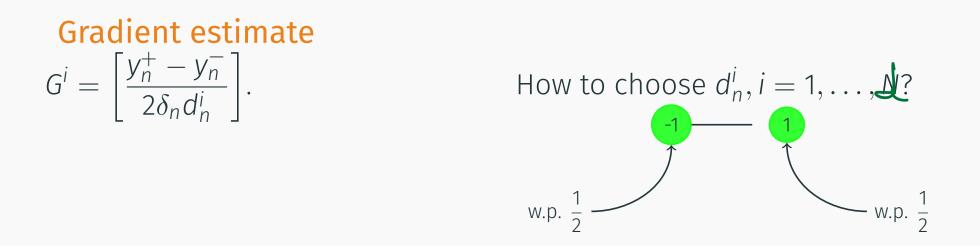
Only 2-queries, regardless of $\mathbb{E}\left[G^{i}\right] = g^{i}!$ Hence, $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}).$

FDSA perturbed dimensions one-at-a-time, leading to 2*N* queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$$

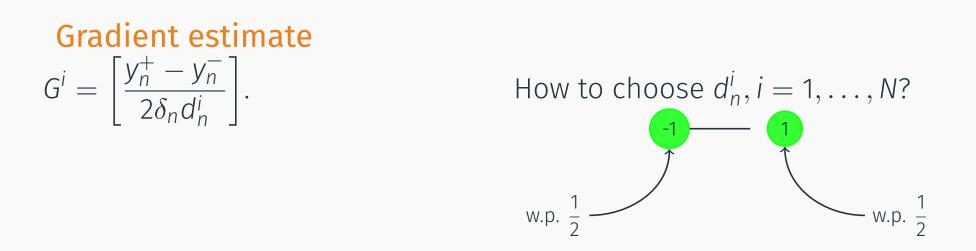


Only 2-queries, regardless of \bigotimes $\mathbb{E}\left[G^{i}\right] = g^{i}!$ Hence, $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}).$ FDSA perturbed dimensions one-at-a-time, leading to 20 queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$$



Only 2-queries, regardless of \mathcal{A} ! $\mathbb{E}\left[G^{i}\right] = g^{i}!$ Hence, $\|\mathbb{E}\left[G\right] - \nabla f(\theta)\|_{2} = O(\delta^{2}).$

Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-.$$

Gradient estimate

$$G^{i} = \left[\frac{y_{n}^{+} - y_{n}^{-}}{2\delta_{n}d_{n}^{i}}\right].$$

Taylor series expansions

$$f(\theta_n \pm \delta_n d_n) = f(\theta_n) \pm \delta_n d_n^\top \nabla f(\theta_n) + \frac{\delta_n^2}{2} d_n^\top \nabla^2 f(\theta_n) d_n + O(\delta_n^3)$$
$$\frac{f(\theta_n + \delta_n d_n) - f(\theta_n - \delta_n d_n)}{2\delta_n d_n^i} = \nabla_i f(\theta_n) + \sum_{j=1, j \neq i}^N \frac{d_n^j}{d_n^j} \nabla_j f(\theta_n) + O(\delta_n^2)$$

zero-mean since d_n symmetric Bernoulli ± 1 r.v.s

Hence,
$$\left\|\mathbb{E}\left[G^{i}\right]-\nabla f(\theta_{n})\right\|_{2}=O(\delta_{n}^{2}).$$

Function measurements

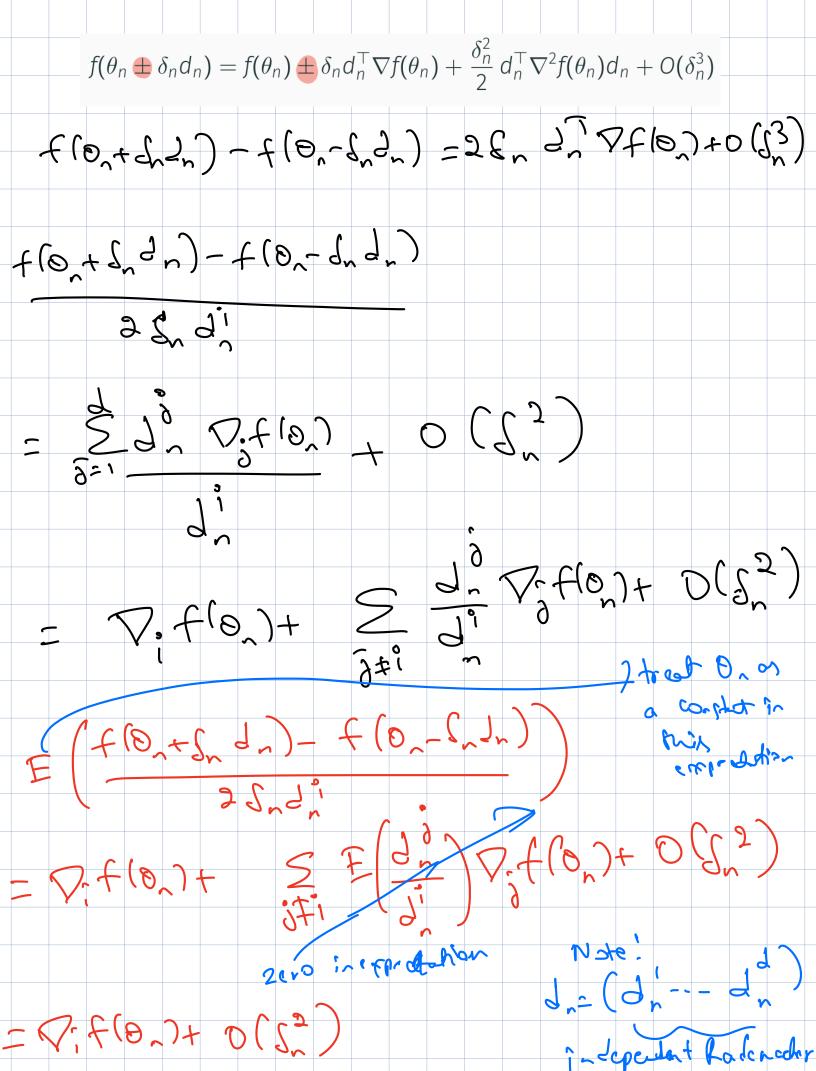
$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-.$$

Taylor series expansions

$$f(\theta_n \triangleq \delta_n d_n) = f(\theta_n) \triangleq \delta_n d_n^\top \nabla f(\theta_n) + \frac{\delta_n^2}{2} d_n^\top \nabla^2 f(\theta_n) d_n + O(\delta_n^3)$$

$$\frac{f(\theta_n + \delta_n d_n) - f(\theta_n - \delta_n d_n)}{2\delta_n d_n^i} = \nabla_i f(\theta_n) + \sum_{j=1, j \neq i}^N \frac{d_n^j}{d_n^j} \nabla_j f(\theta_n) + O(\delta_n^2)$$
zero-mean since d_n symmetric Bernoulli ±1 r.v.s

Hence,
$$\left\|\mathbb{E}\left[G^{i}\right]-\nabla f(\theta_{n})\right\|_{2}=O(\delta_{n}^{2}).$$



Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-.$$

Gradient estimate

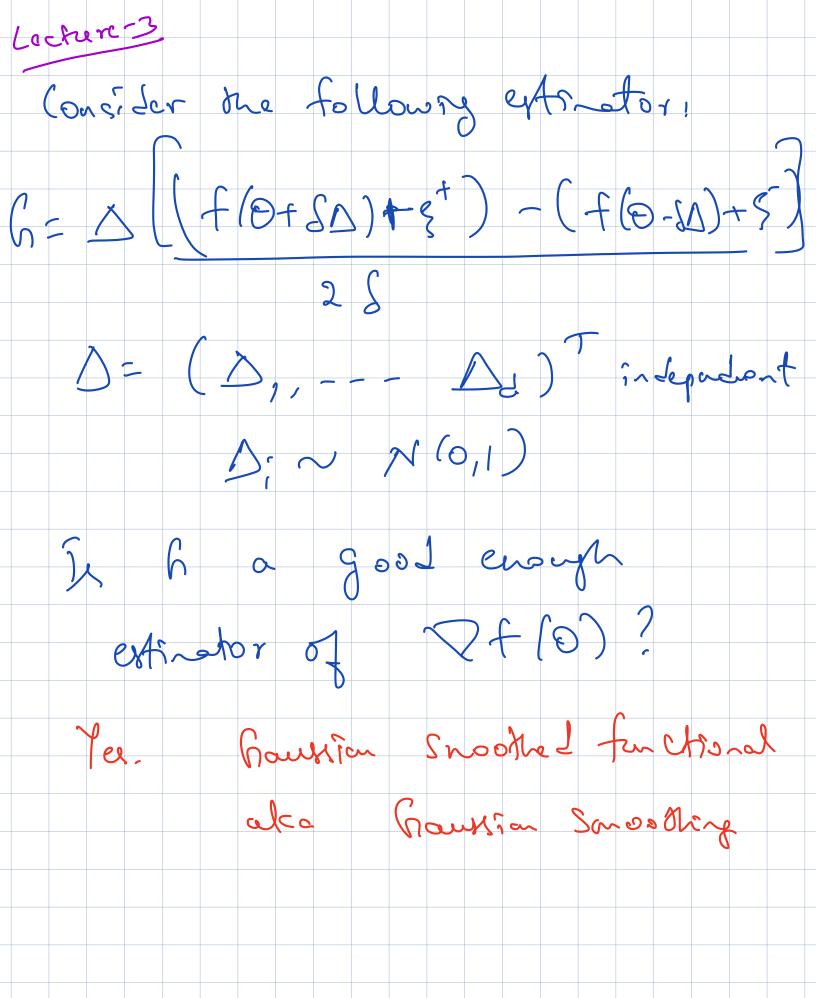
$$G^{i} = \left[\frac{y_{n}^{+} - y_{n}^{-}}{2\delta_{n}d_{n}^{i}}\right].$$

Taylor series expansions

$$f(\theta_n \pm \delta_n d_n) = f(\theta_n) \pm \delta_n d_n^{\top} \nabla f(\theta_n) + \frac{\delta_n^2}{2} d_n^{\top} \nabla^2 f(\theta_n) d_n + O(\delta_n^3)$$

$$\frac{f(\theta_n + \delta_n d_n) - f(\theta_n - \delta_n d_n)}{2\delta_n d_n^i} = \nabla_i f(\theta_n) + \sum_{j=1, j \neq i}^N \frac{d_n^j}{d_n^i} \nabla_j f(\theta_n) + O(\delta_n^2)$$
zero-mean since d_n symmetric Bernoulli ±1 r.v.s

Hence,
$$\left\|\mathbb{E}\left[\mathcal{G}\right] - \nabla f(\theta_n)\right\|_2 = O(\delta_n^2).$$



"Mother" of all two-point sim-pert estimates

$$G = \frac{(f(\theta + U) + \xi^+) - (f(\theta - U) + \xi^-)}{2\delta} V.$$

Choose
$$U, V$$
 such that $\mathbb{E}\left[VU^{\top}\right] = I, \mathbb{E}\left[V\right] = 0.$

One-point estimate!

$$G = \frac{(f(\theta + U) + \xi^+)}{\delta} V.$$

Choose *U*, *V* such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$. Works?? $\mathbb{E}\left[G\right] = \mathbb{E}\left[G - \frac{f(\theta)}{\delta}V\right] = \mathbb{E}\left[\frac{(f(\theta + U) + \xi^+) - f(\theta)}{\delta}V\right].$

"Mother" of all two-point sim-pert estimates

$$G = \frac{(f(\theta + U) + \xi^+) - (f(\theta - U) + \xi^-)}{2\delta} V.$$

Choose
$$U, V$$
 such that $\mathbb{E}\left[VU^{\top}\right] = I, \mathbb{E}\left[V\right] = 0.$

One-point estimate!

$$G = \frac{(f(\theta + U) + \xi^+)}{\delta} V.$$

Choose *U*, *V* such that
$$\mathbb{E}\left[VU^{\top}\right] = I$$
, $\mathbb{E}\left[V\right] = 0$. Works??
 $\mathbb{E}\left[G\right] = \mathbb{E}\left[G - \frac{f(\theta)}{\delta}V\right] = \mathbb{E}\left[\frac{(f(\theta + U) + \xi^{+}) - f(\theta)}{\delta}V\right].$

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V = \delta^{-1} U$
 - Smoothed functional by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_N), V = N\delta^{-1} U$
 - RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
 - Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1), V = \delta^{-1} U$
 - SPSA by Spall (1992).

•

• Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O(\delta^2)$, while variance is O(1) or $O(\delta^{-2})$ (noise controlled or not)

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V = \delta^{-1} U$
 - Smoothed functional by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_N), V = N\delta^{-1} U$
 - RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
 - Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1), V = \delta^{-1} U$
 - SPSA by Spall (1992).

•

• Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O(\delta^2)$, while variance is O(1) or $O(\delta^{-2})$ (noise controlled or not)

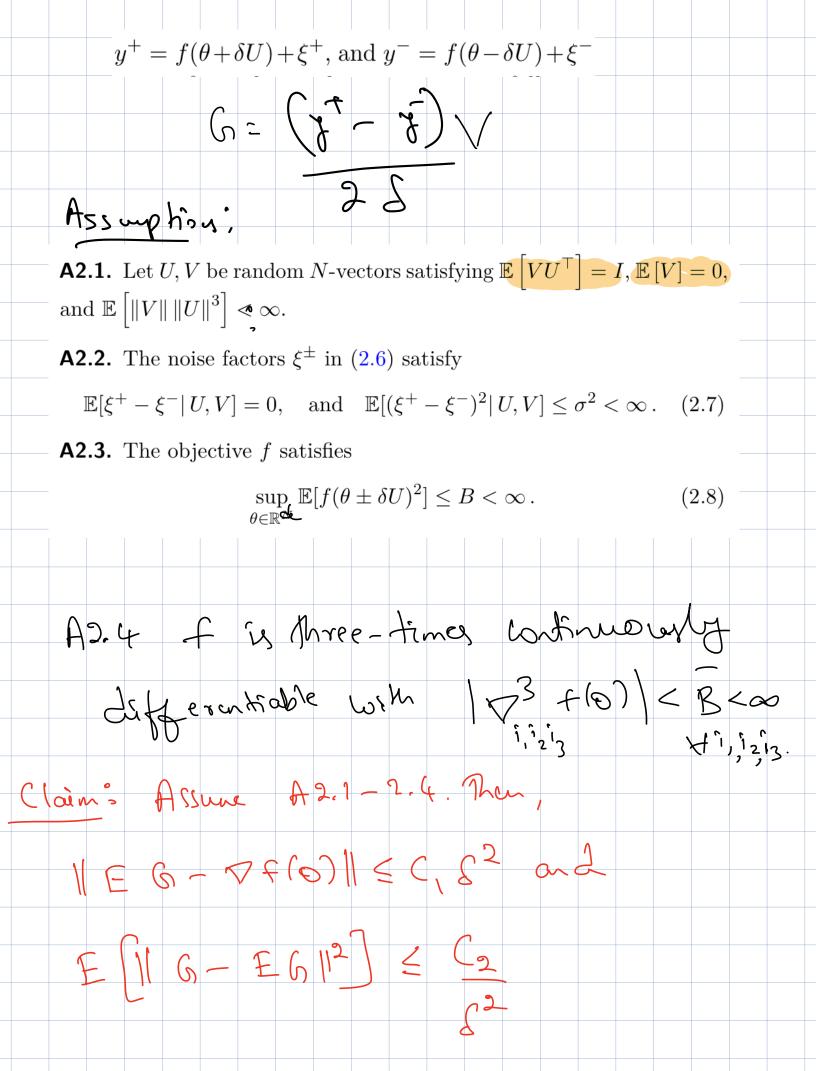
Family of "Sim-pert" Gradient Estimates

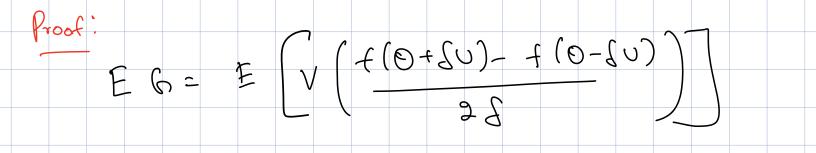
- $U \sim \delta \mathcal{N}(0, I), V = \delta^{-1} U$
 - Smoothed functional by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_N), V = N\delta^{-1} U$
 - RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
 - Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1), V = \delta^{-1} U$
 - SPSA by Spall (1992).

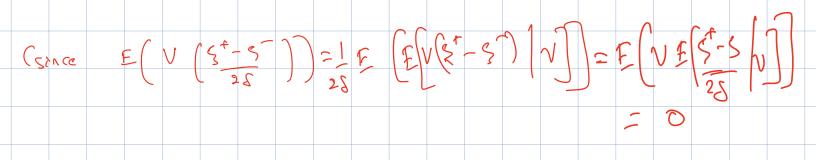
•

• Deterministic perturbations by Bhatnagar et al. (2003)

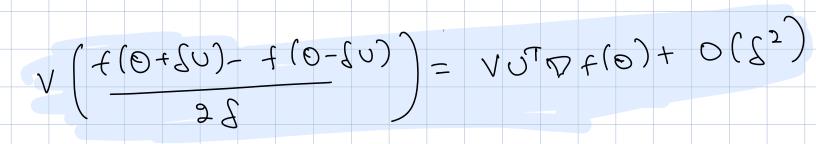
Does it matter which of these we select? Not really: Bias is always $O(\delta^2)$, while variance is O(1) or $O(\delta^{-2})$ (noise controlled or not)

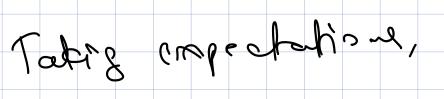


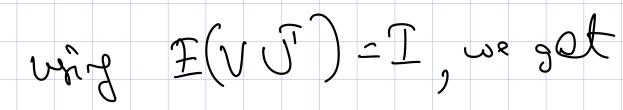




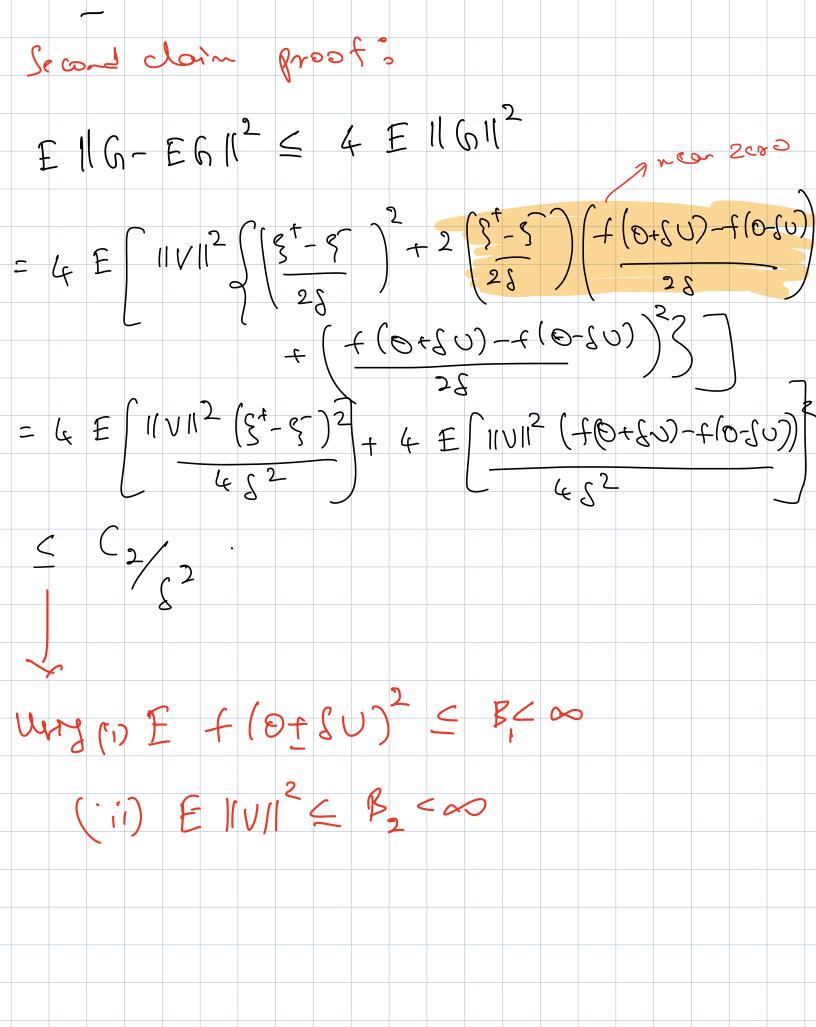








 $I = G - \nabla f(O) M \leq C, S^2$

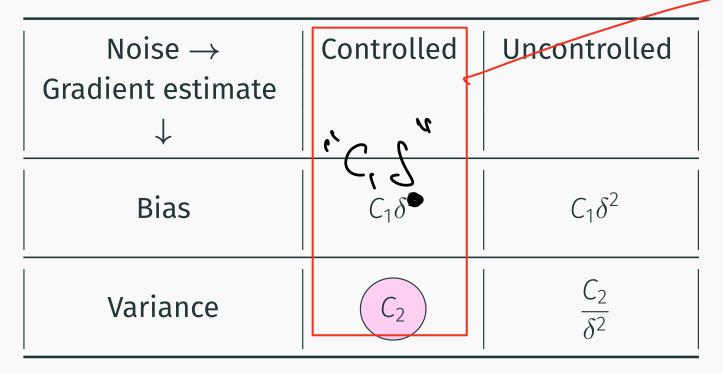


What we have learned so far?

For performing gradient descent:

$$\theta_{n+1}=\theta_n-a_nG_n,$$

we can construct nearly unbiased gradient estimate G_n using simultaneous perturbation trick Noise \rightarrow



This assumed $f \in C^3$. Holds also for f convex, smooth.

A few answers so far...

Q1) How to form G_n from function samples so that $G_n \approx \nabla f(\theta_n)$ Use simultaneous perturbation trick Q2) Such a G_n - is it unbiased? Almost what we get is an asymptotically unbiased estimate? Q3) Does $\theta_{n+1} = \theta_n - a_n G_n$ converge to θ^* with such a G_n? ?? **Q4)** If answer is yes to above, what is the convergence

??

rate?

A few answers so far...

Q1) How to form G_n from function samples so that $G_n \approx \nabla f(\theta_n)$ Use simultaneous perturbation trick **Q2)** Such a *G_n* - is it unbiased? Almost ... what we get is an asymptotically unbiased estimate if we let $\int_{n} \neg O$ since 2Q3) Does $\theta_{n+1} = \theta_n - a_n G_n$ converge to θ^* with such a G_n? ??

Q4) If answer is yes to above, what is the convergence rate?

A few answers so far...

??

Q1) How to form G_n from function samples so that $G_n \approx \nabla f(\theta_n)$ Use simultaneous perturbation trick Q2) Such a G_n - is it unbiased? Almost what we get is an asymptotically **Q3)** Does $\theta_{n+1} = \theta_n - a_n G_n$ converge to θ^* with such a G_n ? ?? Q4) If answer is yes to above, what is the convergence rate? E (f(0,) - f(0)) or $E \left[\sqrt{f(0)} \right]^2$ $E \left[(f(0,) - f(0)) \right]^2$ Motivation

The framework

First-order methods

How are Gradients Estimated? Analysis ~ To be covered at a hoter point in the course after introducing Commercials the necessary lockground on Stochastic approximation

Second-order methods

Applications

