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Application I: Service System

Customer 2 Internal Work

All Service Requests

|

One queue per “High" SW

High Skill Level {Priority Queue)

Queue
Manager

N

Medium Skill Level (Priority Queue) One queue per “Medium" SW

+——— Resource ”‘l‘ I}JJ-‘
Allocator —* | l [ | |

Low Skill Level (Priority Queue)

v

Shift Schedule and
Resource lnfonn‘atl—oE]

Runtime Monltc]J




Table 1: Workers W; ;

Skill levels
Shift | Hish Med Low

S1 1 3 /
S2 0 5 2
S3 3 1 2

Y OEEH € i
{—7@—'7 O£ ~I 0o,

£+ g onp™ae K2

Table 2: SLA targets +;

Customers
Priority | Bossy Corp  Cool Inc
P 4h 5h
P, 8h 12h
P 240 48h
18h 1440
fx\:k(: xk . alc C\(,__

Aim: Find the optimal number of workers for each shift and of each

skill level

- that minimizes the labor cost and

- satisfies SLA requirements




Application Il: Transportation

On a good day, the trafficis ...
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Aim: Maximize traffic flow

Input: Output:
Coarse congestion estimates Policy for switching traffic lights
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Aim: Maximize traffic flow

Input: Output:
Coarse congestion estimates Policy for switching traffic lights

Input: Coarse congestion estimates
Sensor loops at two points along the road
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Low Medium High



Aim: Maximize traffic flow

Input: Output:

Coarse congestion estimates Policy for switching traffic lights

Input: Coarse congestion estimates
Sensor loops at two points along the road

L1 L2

Low Medium High

How to switch traffic lights given L1 and L2?

How to choose L1 and L2 for a given policy and road network?
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Application Ill: Intrusion detection using sensor networks




Common application traits

Stochastic:
noisy observations

Model-free: | Solution: |
sample access to objective Simultaneous perturbation
* gradients unavailable methods

High-dimensional:
brute-force search infeasible

10



The framework



Basic optimization problem

Y\'f("% g\,gef\)whmn

Aim: 0" = arg min { f6) £ E[F(, g)]}

?(%,\,% r\> - f: IR{L R Is the performance

measure

Observation

- f"not* assumed to be convex

'§0 > + F(0,&) 1s the sample performance
'I

4 - £ 1s the noise factor that captures
stochastic nature of the problem

Environment Agent

Query

; - @ is the (vector) parameter of
9 n Interest

" - © C ]R{JLiS the feasible region in
which 0 takes values.

1



Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.

- Many simplifying assumptions are required.
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Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.

- Many simplifying assumptions are required.

A good alternative of modeling and analysis is "Simulation”

/ero mean

60, —| Simulator

— (6n) + &n /

Figure 1: Simulation optimization 12



Noise controls

Recall: f(8) = E[F(0,&)].

Two settings for noise:

Controlled noise £ can be kept fixed between queries to
obtain F(64,&) and F(6,, &)
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Noise controls

Recall: f(8) = E[F(0,&)].

Two settings for noise:

Controlled noise £ can be kept fixed between queries to
obtain F(64,&) and F(6,, &)

Uncontrolled noise F(#,¢&) can be obtained at any point, but &
IS not controllable
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Challenges in simulation optimization

.
Deterministic
optimization
problem

- focus is on
search for
better
solutions

- Complete
Information
about objective
function f, esp.
gradients

14



Challenges in simulation optimization

. |
Deterministic Stochastic optimization problem
optimization - fcannot be obtained directly, but we are
problem . .
given sample access, i.e.,
- focus is on f(6) = E[F(6, €)]
search for
better - Each sample F(#, ) I1s obtained from an
solutions expensive simulation experiment or a
(real) field test
- Complete
information - focus is on both search and evaluation
about objective - Tradeoff between evaluating better vs.
function f, esp. finding more candidate solutions
gradients

Challenge: to find 8* = argmin f(0), given only
I=C)

noisy function evaluations.
14



Some more applications

-
Energy Demand management

- Consumer demand, energy
generation are uncertain.

- Objective Is to minimize the |
difference. LAttt

A e

|
Transportation

- Car-following model

Fundamentals of

- route choice Traffic Simulation

- traffic assignment model

15



and some more..

Service systems (banks, restaurants, call centers, amusement parks)

@S
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and some more..

Transportation systems (airports: air space, runways, baggage, roads,
queues)

16



and here the list ends..ask INFORMS or attend WSC for more...

Manufacturing  Semiconductor fab

Networks Insurance
Education Healthcare Banking
Mining Oil & Gas Call centers

Automotive OEM Aerospace Retirement planning

17



Some vendors...

aGPSS Analytic solver

AnyLogic FlexSim ExtendSim Pro
Arena MedModel Oracle
Opt Suite Crystal Ball
Pedestrian Polaris ProModel Opt Suite
dynamics
SLIM Solver Vanguard

SDK Platform

Tecnomatix Simio DiscoverSim

James J. Swain, “Simulation Software Survey — Simulation Takes Over: Reality is for Sissies,” OR/MS Today, Oct
2017. 18




Success stories...

- Kroger (Edelman 2013 finalist, gradient-based) Kroger Uses
Simulation-Optimization to Improve Pharmacy Inventory
Management

* www.youtube.com/watch?v=BNyDbBy-KYY (start at 0:45)
* https://www.informs.org/About-INFORMS/News-Room/

Press-Releases/Edelman-2013-Announcement

The Franz Edelman Award recognizes outstanding
examples of innovative operations research and
analytics that improves organizations and often
change people’s lives.

- Financial engineering

* Monte Carlo simulation used widely on Wall Street.
* Gradient estimates needed for hedging.

- Hot research area: several research papers continue to be published
19
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First-order methods



9n+1 — en - anGn- (1)
Suppose that

+ Gp 1S an nolisy estimate of the gradient Vf(4,), 1.e,
]E(Gn) — v]C(é)n)-
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9n+1 — en - anGn- (1)
Suppose that

+ Gp 1S an nolisy estimate of the gradient Vf(4,), 1.e,
]E(Gn) — v]C(é)n)-
- {a,} are pre-determined step-sizes satisfying:

(©.@) © @)
Y ap=o00, ) a; <o
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9n+1 — en - anGn- (1)
Suppose that

+ Gp 1S an nolisy estimate of the gradient Vf(4,), 1.e,
]E(Gn) — v]C(é)n)-
- {a,} are pre-determined step-sizes satisfying:

(©.@) © @)
Y ap=o00, ) a; <o

- iterates are stable: sup [|6,|| < oo.
n

21



Suppose that

+ Gp IS an nolisy estimate of the gradient Vf(4,), 1.e,
E(Gn) = V(6n). = Uun LS ned t\m?:d}&

- {a,} are pre-determined step-sizes satisfying:
Sa=w D@<x ey Tas A
n=1 n="

- iterates are stable: sup [|6,|| < oo.
'G I/S S ™ 00n ‘ﬁ’\
Theorem (Variant of Robbins Monro stochastic approximation)
Letting K:= {0 | Vf(8) = 0}, we have

0, — Ka.s. as n — oo. 21



erH_’] = 9,’) — anGn.

How to keep iterates stable?
Project 6, onto a compact and convex set © < Projected
stochastic approximation

22



Ont1 = 0p — anGp. (2)

How to estimate the gradient of f from samples?

0, — Simulator — f(0,) + &,
'

'fQQ[r \P°‘("L_

Simulta‘ﬁ%ﬂﬁ"smﬁg?turbation methods.

Stochastic approximation (SA) alphabet soup

FDSA Finite difference stochastic approximation

SPSA Simultaneous perturbation stochastic
approximation

SESA Smoothed functional stochastic approximation
RDSA Random direction stochastic approximation

22



In the next few slides ...

Ont1 = 0nh — anGp. (3)

Q1) How to form G, from function samples so that G, ~ Vf(6,)

)

Q2)

Q3) Does 0, converge to 6* with such a G,?
)

Q4) If answer Is yes to above, what Is the convergence rate?

Such a G, - IS It unbiased?

23
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How are Gradients Estimated? o £ SWJ‘Q/
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First-order methods
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Perfect measurements < No noise

Finite-difference stochastic apRroximation (FDSA) (Kiefer and

Wolfowitz, 1952): D) %/_9_ —F (83
e
%"‘"‘\J —) fgi= (f(9+5e) ), i=1... &d
et o
Assume f € C° oJ\'\"V)
Taylor-series expansion: Ay~ o
A 52 / \’OUJJL
fl6 + de;) = f(6) + 3 Vf(O)ei + = &' N4f(0)e; + O(5°).
'V'%F (¢)

Accuracy: ||lg — Vf(9)], = O(9).

vaow (5\’ S.&- (\%’— V&)l 2 Dz[;@



Perfect measurements < No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and
Wolfowitz, 1952):

gf:%(f(eme,-)—f(@)), =1, 4

Assume f € C’ Cf\'(n—ﬂe'-én"wu\ Lpon‘r\o»\N& égk(svdﬁ\h’\q>

Taylor-series expansion:

2

(6 + 6e)) = f(9) + 5 Vf(H)e; + % e Vf(0)e; + 0(5°).

Accuracy: ||lg — Vf(9)], = O(9).

Ka
| J D %o\l\u‘*&&' Qd(’ .
Needs a{_+1 queries. HQ\Q}@ (e o—



FDSA with two-sided Differences

Improved estimate:

ancel
g&;kdv:> g’:zlé(f(8—|—5e,-)—f(9_5ei))v =1, dl

Taylor-series expansions:
@ f(0 + de;) = ﬂ(és + 5V]c(és_€,' + %2 e,-T/%f(H)e,- + 0(53).
O de)—H) 5RO + o e Xb)e + OF)

—

28 V*C(@’%; <~ O (&3>

Accuracy: |lg — VA(0)|l, = 0(6%).

DO <



FDSA with two-sided Differences

Improved estimate:

gizzl(s(f(Here,-)—f(H—ée,)), i:1,...,t§.\

Taylor-series expansions:

2

f(6 + de;) = f(0) + o Vf(0)e; + % e V*f(0)e; + 0(5°).
2

0 se) = f(6) - 5VfO)e: + > e Vf(O)e; + O(5”).

Accuracy: ||g — Vf(8)]|, = O(5°).

Needs 28l queries. \/ 26



FDSA + Two-sided Differences + Noise

Improved estimate: © 51 —H ()%
o | N
G'Z%{f(9+5€i)+€,~+—(f(9—5€i)+5,-_)}7 =1 N L
es—
W 3.3 ¢

Taylor-series expansions:

(0 + de) = f(0) + 6 VF(6e + & e Tf(b)es + O(5").

(0 de) = 0) — 6 V(e + 2 €T VH(0)e, + 0[5

27



FDSA + Two-sided Differences + Noise

Improved estimate:

6 = 55 {0 +0e) + & — (0 —de) + &)}, |

Taylor-series expansions:

f(0 + de;) = f(0) + d Vf(0)e; + %2 e V4f(8)e; + O(8°).
(0 de) = 0) — 6 Vi(0)e + 2 €T Vf(0)e, + 05

Assumption: E [¢F] =0, E [(£F)] < 0? < +o0.

27



FDSA + Two-sided Differences + Noise

Improved estimate:

= {f0+0e) + & — (10 -de) + &)}, =1 L

Taylor-series expansions:

f(0 + de;) = f(0) + d Vf(0)e; + %2 e V4f(8)e; + O(8°).

2

f0 - 5e) = f(6) - 5Vf(O)e: + > el Vf(0)e; + O(F).

Assu'mptio'n: E[¢F] =0, E[(£5)] < 0? < +o0. %’fﬁ‘\l/%,ﬂs\
E [G’} =g 7}

N(O,\7

27




FDSA + Two-sided Differences + Noise

Improved estimate:

= Af(0+0e) + & — (0 - be) + &)}, i=1T,...

Taylor-series expansions: rﬁ',‘j- %(87 &_E

(6 + de;) = f(6) + 6 Vf(0)e: + % el V2f(0)e; + O(63).

(0 de) = 10) — 6 Vi0)e + 2 €T Vf(0)e, + 05
Assumption: E [¢F] =0, E [(gil)] < 0’ < +00.
B [G’} — g". Hence

[E[G] - Vf(6)[l, = O(s?) . +— bias

4 .



So far: with FDSA, we can get a gradient estimate

6 = o {0 +0e) + & — (0 —de) + &)}, |

bias 0(6°)

what Is second moment: E [HGH%] =7

1,

...,fi.vvith

28



So far: with FDSA, we can get a gradient estimate

6 = o {0 +0e) + & — (0 —de) + &)}, |

bias 0(6°)

what Is second moment: E [HGH%] =7

En— &5

Gi=9gi+ 5

1,

,053. with

28



So far: with FDSA, we can get a gradient estimate

G = 21—5 [F(6+ 6e)) + £ — (f(0— de) + €)Y, i=1,... 8 with

bias 0(6°)

what Is second moment: E [HGH%] =7

S

G = gi + 25’ ,hence E [G/] = g7

2

N 20
42

0.2

2
=9 t 55

J\)

28



eh- <€\ = 0(8?)

So far: with FDSA, we can get a gradient estimate

G = 21—5 [F(0+ 6e)) + € — (f(0— de) + €)Y, i=1,... A with
bias 0(6°)

On
what is second moment: E [HGH%] =7 G\ - '.'
952 2 C&L

S

G = g; + - ’ ,henceE[Gﬂ:g?Jri:g,ZJr;—éz and

20 462

28



N

FDSA perturbed dimensions one-at-a-time, leading to 2@\queries.
Can we reduce the number of queries?

29



FDSA perturbed dimensions one-at-a-time, leading to QALqueries.
Can we reduce the number of queries?

ldea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
= f( 6n + dndy )"‘f:fﬂ Vo =f(60nh—6ndn )+ &,

Gradie+nt estimate /7£oal 0‘“"‘,%\/
G = [y” _)./”]. How to choose d',i=1,.

26, ’ K

4
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FDSA perturbed dimensions one-at-a-time, leading to ZA\queries.
Can we reduce the number of queries?

ldea: Simultaneously randomly perturb all dimensions! (Spall, 1992)
Function meadsw_aoks/év\“) 16 v down v e DY
Vo =f(0n+0ndn )+ &7, v, =f(0n—0ndn ) +&,

Gradient estimate

vy =Y N \
G = [=/——|. How to choose d,,,i=1,...
n [ 26,dL ] "
uu.‘(%o&}\"f
’ T
T T ‘
= 9~ % (o " "3
ALY ~

Only 2-queries, regardless of&h

29



FDSA perturbed dimensions one-at-a-time, leading to 2N queries.
Can we reduce the number of queries?

ldea: Simultaneously randomly perturb all dimensions! (Spall, 1992)
Function measurements
)/n+ :f( 9n"‘5ndn )‘l‘f;ﬂ;_a Yn :f( On _5ndn )"‘Sn_

Gradient estimate
. + _ o .
G’:[y” y”]. Hovvtochoosed’n,i:L...,ﬂ?

20,d!
1 /‘ K 1
W.p. = W.p. =

2 T2

Only 2-queries, regardless ofq&o

E|6| =g

29



FDSA perturbed dimensions one-at-a-time, leading to &Lqueries.
Can we reduce the number of queries?

ldea: Simultaneously randomly perturb all dimensions! (Spall, 1992)
Function measurements
)/n+ :f( 9n"‘5ndn )‘l‘f;ﬂ;_a Yn :f( On _5ndn )"‘fn_

Gradient estimate
o |va =vm »
G' = . How to choose d,,i=1,...,N?

20,d!
1 /‘ K 1
W.p. = W.p. =

2 T2

Only 2-queries, regardless of 4!
E [Gf} =g/l Hence, |E[G] — Vf(8)|, = O(62).

29



FunCtion measurements
Vi =f(On+0ndn )+ &7, Vo =f(0n—dndn )+ &, .

Gradient estimate

20, |




FunCtion measurements
Vi =f(On+ndn )+ &7, Vi, =f(60n—0ndn ) +¢&,.

Gradient estimate

i [y —vn \
G_[;M]. F G

. € £(08 20— > L2
35,5

Taylor series expansions
52
f(0n & dndn) = f(6n) & 6ndy VS(6n) + =} dy V'f(6r)dn + O(37)
N j

0, + dndn) — f(0, — Ondp dn
f(0n + 2)6nd];( ):W(QHH S 7 Vif(tn) +0(57)

=1, "
zero-mean since dn symmetric Bernoulli £1 r.v.s\/

30



0

(B0 & 3ndn) = f(6n) @307 VF(6n) + 3

dn V*f(6n)dn + O(33)

fﬂe,\acc&\%f) ~£(e~{3.) =2, é:\ Y£®+0 Q})
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FunCtion measurements
Vi =f(On+ndn )+ &7, Vo =f(0n—0ndn ) +&,.

Gradient estimate

2.0, |

Taylor series expansions

f(On £ bths) = 1(00) £ 6,0 F(6) + 2 6 V1(00)dn + O(5)

On + 0ndn) — f(6n — dndp - dl}’

=1, "
zero-mean since dn symmetric Bernoulli £1 r.v.s\/

Hence, HE [G’] — Vf(6n)

= 0(62).
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“Mother” of all two-point sim-pert estimates

flO+U)+¢)-(f0-U)+€&),,

|
6= 20

Choose U,V such that E {VUT] [, E[V] = 0.

One-point estimate!

flo+u)+¢t),,

_
o= 5

Choose U,V such that E [VUT} =, E[V] = 0.
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“Mother” of all two-point sim-pert estimates

flO+U)+¢)-(f0-U)+€&),,

|
6= 20

Choose U,V such that E {VUT] [, E[V] = 0.

One-point estimate!

flo+u)+¢t),,

_
o= 5

Choose U, V such that E [VUT} — |, E[V] = 0. Works??
EKﬂ:E[-—%?4:AEIW%HD+€W_K®V.

0

31



Family of “Sim-pert” Gradient Estimates

- U~ dN(0,1),V=5""U
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by
Dippon (2003); Nesterov and Spokoiny (2011).
+ U~ 6 Unif(Sy), V=N§""U
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth
et al. (2017)
- Rediscovered by Flaxman et al. (2005)

32



Family of “Sim-pert” Gradient Estimates

- U~ dN(0,1),V=056""U
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by
Dippon (2003); Nesterov and Spokoiny (2011).
+ U~ 6 Unif(Sy), V=N§""U
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth
et al. (2017)
- Rediscovered by Flaxman et al. (2005)
+ U; ~ § Rademacher(£1), V=6""U
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)
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Family of “Sim-pert” Gradient Estimates

- U~ dN(0,1),V=5""U
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by
Dippon (2003); Nesterov and Spokoiny (2011).
+ U~ 6 Unif(Sy), V=N§""U
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth
et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- U; ~ § Rademacher(£1), V=6""U
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)

Does It matter which of these we select? Not really:
Bias is always O(8%), while variance is O(1) or O(62) (noise
controlled or not) 3



yT = f(O+6U)+ET andy™ = f(O—0U)+&

G- (5 v
A‘ES"”()H"‘/\‘: 9‘ g

A2.1. Let U,V be random N-vectors satisfying E [VUT] =1,E[V]=0,
and E [[|V]| [U]*] < oc.

A2.2. The noise factors £= in (2.6) satisfy
E[¢t —¢7|U, V] =0, and E[t - )| U V]<o?<oo. (2.7)
A2.3. The objective f satisfies

sup E[f(# £ 6U)?*] < B < 0. (2.8)
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What we have learned so far?

For performing gradient descent:

9n+1 — en - aI’IGI’h

we can construct nearly unbiased gradient estimate G,
using simultaneous perturbation trick

Noise — Controlled ntrolled \no~
Gradient estimate T
\&
+ "n \
N\
Bias C15’ C152

Variance @ 9
52

This assumed f € C3. Holds also for f convex, smooth.
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A few answers so far. ..

Q1) How to form G, from function samples so that
Gn =~ Vf(0n)
Use simultaneous perturbation trick

34



A few answers so far. ..

Q2) Such a Gy, - is it unbiased?

Almost ... what we get Is an asymptotically

unbiased estimate® { weled { —o ince
() A ten ) O(&?\Q

34



A few answers so far. ..

/-) ONJ& fﬁ}ﬁ‘@%
Q3) Does 041 = 8, — anG, converge to * va:h such a
Gn,?
fde

Q4) If answer is yes to above, what is the convergence
rate? Canr U \oswl
[ 2 v 5
s ~¥ I\ °
LS. o E 1960
T (L0 ~ c08))



First-order methods

Analysis 5 To he (overcd aF & laber (oin
e (ouvse G‘vg\t'*r ;V\MJ»*CQ%

KLQ_ )\<Cu/\c.wa '\'GQ,QCSYOMA DI
gkakuq’)—rc o-“mom'-\r«w’ﬁm

35



xkecd on analysis

THERE EXISTS SOME | OH YES. AND UE MUST | | GRAB YOUR SLIORDS,
NUMBER X SUCH | gomeuwrERE our | FIND IT... AND STUDENTS! LWE RIDE!
THAT ) =GFO)=1. | mgRe, ImExsTs, | DESTROY (T , L THINK TMIN

) | THE LIRONG
MATH CLASS?

&

“n

&

Ve
IM FINALLY IN
THE. RIGHT ONE.

36



