
Motivation

 

Lecture 1 Introduction to

zeroth order optimization
200



3



Application I: Service System
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Table 1: Workers Wi,j

Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2

Table 2: SLA targets γi,j

Customers
Priority Bossy Corp Cool Inc
P1 4h 5h
P2 8h 12h
P3 24h 48h
P4 18h 144h

Aim: Find the optimal number of workers for each shift and of each
skill level

• that minimizes the labor cost and

• satisfies SLA requirements
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Application II: Transportation

On a good day, the traffic is . . .
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And on a bad day, it can be . . .
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Aim: Maximize traffic flow

Input:
Coarse congestion estimates

Output:
Policy for switching traffic lights

Input: Coarse congestion estimates
Sensor loops at two points along the road

Low Medium High

L1 L2

How to switch traffic lights given L1 and L2?

How to choose L1 and L2 for a given policy and road network? 8
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Application III: Intrusion detection using sensor networks

Sensor Intruder

Aim:
• minimize the energy
consumption of the
sensors, while

• keeping tracking
error to a minimum
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Common application traits

Stochastic:
noisy observations

Model-free:
sample access to objective
* gradients unavailable

High-dimensional:
brute-force search infeasible

Solution:
Simultaneous perturbation

methods
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The framework



Basic optimization problem

Environment Agent

F(θn, ξn)

Observation

Query

θn

Aim: θ∗ = arg min
θ∈Θ

)
f(θ) ! E[F(θ, ξ)]

}
,

• f : RN → R is the performance
measure

• f *not* assumed to be convex

• F(θ, ξ) is the sample performance

• ξ is the noise factor that captures
stochastic nature of the problem

• θ is the (vector) parameter of
interest

• Θ ⊆ RN is the feasible region in
which θ takes values.
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Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

• Too complex to solve analytically.

• Many simplifying assumptions are required.

A good alternative of modeling and analysis is ”Simulation”

θn Simulator f(θn) + ξn

Zero mean

Figure 1: Simulation optimization 12
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Noise controls

Recall: f(θ) = E [F(θ, ξ)].

Two settings for noise:

Controlled noise ξ can be kept fixed between queries to
obtain F(θ1, ξ) and F(θ2, ξ)

Uncontrolled noise F(θ, ξ) can be obtained at any point, but ξ
is not controllable
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Challenges in simulation optimization

Deterministic
optimization
problem

• focus is on
search for
better
solutions

• Complete
information
about objective
function f, esp.
gradients

Stochastic optimization problem

• f cannot be obtained directly, but we are
given sample access, i.e.,
f(θ) ≡ Eξ[F(θ, ξ )]

• Each sample F(θ, ξ) is obtained from an
expensive simulation experiment or a
(real) field test

• focus is on both search and evaluation

• Tradeoff between evaluating better vs.
finding more candidate solutions

Challenge: to find θ∗ = arg min
θ∈Θ

f(θ), given only

noisy function evaluations.
14
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Some more applications

Energy Demand management

• Consumer demand, energy
generation are uncertain.

• Objective is to minimize the
difference.

Transportation

• Car-following model

• route choice

• traffic assignment model

15



and some more..

Service systems (banks, restaurants, call centers, amusement parks)
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and some more..

Transportation systems (airports: air space, runways, baggage, roads,
queues)
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and here the list ends..ask INFORMS or attend WSC for more...

Manufacturing Semiconductor fab Supply chains

Networks Finance Insurance

Education Healthcare Banking

Mining Oil & Gas Call centers Business planning

Automotive OEM Aerospace Retirement planning Govt. agencies
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Some vendors...

aGPSS Analytic solver Analytica

AnyLogic FlexSim ExtendSim Pro

Arena MedModel Oracle
Opt Suite Crystal Ball

Pedestrian Polaris ProModel Opt Suite
dynamics

SLIM Solver Vanguard
SDK Platform

Tecnomatix Simio DiscoverSim
1James J. Swain, “Simulation Software Survey — Simulation Takes Over: Reality is for Sissies,” OR/MS Today, Oct

2017. 18



Success stories...

• Kroger (Edelman 2013 finalist, gradient-based) Kroger Uses
Simulation-Optimization to Improve Pharmacy Inventory
Management

• www.youtube.com/watch?v=BNyDbBy-KYY (start at 0:45)
• https://www.informs.org/About-INFORMS/News-Room/
Press-Releases/Edelman-2013-Announcement

The Franz Edelman Award recognizes outstanding
examples of innovative operations research and
analytics that improves organizations and often
change people’s lives.

• Financial engineering
• Monte Carlo simulation used widely on Wall Street.
• Gradient estimates needed for hedging.
• Hot research area: several research papers continue to be published

19

https://www.informs.org/About-INFORMS/News-Room/Press-Releases/Edelman-2013-Announcement
https://www.informs.org/About-INFORMS/News-Room/Press-Releases/Edelman-2013-Announcement


The Matrix has you..
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First-order methods

Lecture 2



Stochastic analog of gradient descent

θn+1 = θn − anGn. (1)

Suppose that

• Gn is an noisy estimate of the gradient ∇f(θn), i.e.,
E(Gn) = ∇f(θn).

• {an} are pre-determined step-sizes satisfying:
∞∑

n=1
an =∞,

∞∑

n=1
a2n <∞

• iterates are stable: sup
n
‖θn‖ <∞.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting K := {θ | ∇f(θ) = 0}, we have

θn → K a.s. as n→∞. 21
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θn+1 = θn − anGn. (2)

How to keep iterates stable?
Project θn onto a compact and convex set Θ← Projected
stochastic approximation

22



θn+1 = θn − anGn. (2)

How to estimate the gradient of f from samples?

θn Simulator f(θn) + ξn

Simultaneous perturbation methods.

Stochastic approximation (SA) alphabet soup

FDSA Finite difference stochastic approximation
SPSA Simultaneous perturbation stochastic

approximation
SFSA Smoothed functional stochastic approximation
RDSA Random direction stochastic approximation

22
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In the next few slides . . .

θn+1 = θn − anGn. (3)

Q1) How to form Gn from function samples so that Gn ≈ ∇f(θn)
Q2) Such a Gn - is it unbiased?
Q3) Does θn converge to θ∗ with such a Gn?
Q4) If answer is yes to above, what is the convergence rate?

23
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Perfect measurements⇔ No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and
Wolfowitz, 1952):

gi = 1
δ
(f(θ + δei)− f(θ)) , i = 1, . . . ,N .

Assume f ∈ C3

Taylor-series expansion:

f(θ + δei) = f(θ) + δ∇f(θ)ei +
δ2

2 e
"
i ∇

2f(θ)ei + O(δ3).

Accuracy: ‖g−∇f(θ)‖2 = O(δ).

Needs N+ 1 queries. 25
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FDSA with two-sided Differences

Improved estimate:

gi = 1
2δ (f(θ + δei)− f(θ − δei)) , i = 1, . . . ,N.

Taylor-series expansions:

f(θ + δei) = f(θ) + δ∇f(θ)ei +
δ2

2 e
"
i ∇

2f(θ)ei + O(δ3).

f(θ − δei) = f(θ)− δ∇f(θ)ei +
δ2

2 e
"
i ∇

2f(θ)ei + O(δ3).

Accuracy: ‖g−∇f(θ)‖2 = O(δ2).

Needs 2N queries. 26
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FDSA + Two-sided Differences + Noise

Improved estimate:

Gi = 1
2δ
{
f(θ + δei) + ξ+i − (f(θ − δei) + ξ−i )

}
, i = 1, . . . ,N.

Taylor-series expansions:

f(θ + δei) = f(θ) + δ∇f(θ)ei +
δ2

2 e
%
i ∇2f(θ)ei + O(δ3).

f(θ − δei) = f(θ)− δ∇f(θ)ei +
δ2

2 e
%
i ∇2f(θ)ei + O(δ3).

Assumption: E
[
ξ±
]
= 0, E

[
(ξ±)

]
≤ σ2 < +∞.

E
[
Gi
]
= gi. Hence

‖E [G]−∇f(θ)‖2 = O(δ2) .←− bias

Needs 2N queries.

27
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So far: with FDSA, we can get a gradient estimate

Gi = 1
2δ
{
f(θ + δei) + ξ+i − (f(θ − δei) + ξ−i )

}
, i = 1, . . . ,N. with

bias O(δ2)

what is second moment: E
[
‖G‖22

]
=?

Gi = gi +
ξ+i − ξ−i
2δ , hence E

[
G2i
]
= g2i +

2σ2
4δ2 = g2i +

σ2

2δ2 and

E
[
‖G‖22

]
= ‖g‖22 + O

(
N
δ2

)
.

28
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FDSA perturbed dimensions one-at-a-time, leading to 2N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n

Gradient estimate
Gi =

[
y+n − y−n
2δndin

]
. How to choose din, i = 1, . . . ,N?

-1 1

w.p. 12 w.p. 12

Only 2-queries, regardless of N!
E
[
Gi
]
= gi! Hence, ‖E [G]−∇f(θ)‖2 = O(δ2).

29
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Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n .

Gradient estimate

Gi =
[
y+n − y−n
2δndin

]
.

Taylor series expansions

f(θn ± δndn) = f(θn)± δnd%n ∇f(θn) +
δ2n
2 d

%
n ∇2f(θn)dn + O(δ3n)

f(θn + δndn)− f(θn − δndn)
2δndin

= ∇if(θn)+
N∑

j=1,j &=i

djn
din
∇jf(θn) +O(δ2n)

zero-mean since dn symmetric Bernoulli ±1 r.v.s

Hence,
∥∥∥E

[
Gi
]
−∇f(θn)

∥∥∥
2
= O(δ2n).

30
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Effer the following estimator

h Δ 0 5 10 1075

D Δ D independent

Div 410,1

is h a good enough

estimator of Df 0
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aka Gaussian Smoothing



“Mother” of all two-point sim-pert estimates

G =
(f(θ + U) + ξ+)− (f(θ − U) + ξ−)

2δ V .

Choose U, V such that E
[
VU"

]
= I, E [V] = 0.

One-point estimate!

G =
(f(θ + U) + ξ+)

δ
V .

Choose U, V such that E
[
VU"

]
= I, E [V] = 0. Works??

E [G] = E
[
G− f(θ)

δ
V
]
= E

[
(f(θ + U) + ξ+)− f(θ)

δ
V
]
.
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Family of “Sim-pert” Gradient Estimates

• U ∼ δN (0, I), V = δ−1 U
• Smoothed functional by Katkovnik and Kulchitsky (1972);
• Refined by Polyak and Tsybakov (1990); also studied by
Dippon (2003); Nesterov and Spokoiny (2011).

• U ∼ δ Unif(SN), V = Nδ−1 U
• RDSA by Kushner and Clark (1978); Enhanced by Prashanth
et al. (2017)

• Rediscovered by Flaxman et al. (2005)
• Ui ∼ δ Rademacher(±1), V = δ−1 U

• SPSA by Spall (1992).
• Deterministic perturbations by Bhatnagar et al. (2003)
• . . .

Does it matter which of these we select? Not really:
Bias is always O(δ2), while variance is O(1) or O(δ−2) (noise

controlled or not) 32
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What we have learned so far?

For performing gradient descent:

θn+1 = θn − anGn,

we can construct nearly unbiased gradient estimate Gn
using simultaneous perturbation trick

Noise→ Controlled Uncontrolled
Gradient estimate

↓

Bias C1δ2 C1δ2

Variance C2
C2
δ2

This assumed f ∈ C3. Holds also for f convex, smooth.
33
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A few answers so far. . .

Q1) How to form Gn from function samples so that
Gn ≈ ∇f(θn)
Use simultaneous perturbation trick

Q2) Such a Gn - is it unbiased?
Almost . . . what we get is an asymptotically
unbiased estimate?

Q3) Does θn+1 = θn − anGn converge to θ∗ with such a
Gn?
??

Q4) If answer is yes to above, what is the convergence
rate?
??

34
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