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O is a global minima if
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Strict local global minima if the inequality in
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First order necessary conditions

Let be a local minima of f Rd IR

Suppose that f is continuously differentiable

Then f o 0

Also if f is twice continuously differentiable then

p f o is positive semi definite
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f is differentiable if Df x exists xfRd

If DFC is continuous then f is continuously

differentiable Such functions admit a

Taylor series expansion i e
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If DFC is differentiable then

Hessian matrix FD Éid
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If f is twice continuously differentiable
i.e D f exists is continuous then
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Proof of first order necessary conditions

Recall Okita local min
i Fix Sf Rd Then
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Lii f is twice cont diff'ble Fix SEIR
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Second order sufficient conditions

Let f be twice continuously differentiable

Suppose 0 satisfies
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If Ot is a local win then
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A is not p.S.de no local min

A is p.s.de Then f is convex

so any of satisying Pf Cott Act be

is a global min

Tf A is P.d then A exists
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unique global min

Think about the case when

A is P S d singular
Cain i b is in the coccal
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Taylor's theorem
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Rek For a L smooth f wig Taylor's thin
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L smoothness
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Smoothness for twice cont diff be f
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Convex sets
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convex set
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Let CER be a convex set A function f IR

is convex if
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Remark

T f is concave if f is convex

f is strictly convex if the inequality
in is strict Hx y LE 0,1

Exalpes Linear functions are convex

Any norm is convex

Weighted sum of convex functions
is convex

If f IR is convex Hie
then he If

f x is convex

Differentiable convex functions

Let CER be convex and find IR be a

differentiable convex function Then

i f is convex f 2 fla 2 oct flx

x Z f C

Ii If the inequality in is strict then f is

strictly convex
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Lemma Let C Rd be convex and f be

twice continuously differentiable Then

5 If D fG is positive semi definite pS.d
KFC then f is convex over C

i If D f is positive definite HxtC then

f is strictly convex

E g f a TAX A is symmetric did

Then f is convex A is p.s.de

f is strictly convex A is p.de

Theorem Let C Ekt be convex

f C R be convex Then

a local minima of f is a global minima



In addition if f is strictly convex then

at most one global minima

Convex hull The convex hull denoted convex

of a set of point R is the smallest

convex set containing X
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Gradient descent

min f o
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learning rate step size

St descent direction ie f Ot f Ot
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In a gradient descent GD algorithm
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Df of TSt 117flop 1 0

A first order approximation to f yields
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If f is convex GD converges to a

global minima

Elae convergence in to a stationary point 0
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Stochasticgradientalgorithms
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Zero mean noise

bounded variance

i On Ot Lt Pf Ot 1 wt
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noisy observation of the
gradient of f at Ot
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Conditions for ensuring the update

in Cc for Ot guarantees convergence

to O a local optima off

A Typical assumption for stepsizes
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Let It be the information

available upto time t i.e
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Descent direction
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Observe for a SG algorithm
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Tt can also be checked that
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Under the preceding assumptions

ie under A1 AZ ad f is smooth
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and the limit point say OYof the

sequence Of is a stationary point

off for Pf 10 7 0

Stochastic gradient descent

Want to minimize a function f that is a

finite sum of smooth functions i.e
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Goal in to find a minimizer off



Deterministic AD or batch GD

Ott Oe Le I Pf Ot

Batch GD is computationally intensive

on large training datasets i.e n 21

Stochastic gradient descent Sho
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Pick one of the component functions
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Rewrite SGD update as
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noise

choose Le St Ext Extra
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Hence Of updated wig SGD

Converges w.p to a point

that satisfies 10 7 0

In the context of linear regression

flo In y 150 i

Batch GD Oy Of 2 1 E i Yi Xi't

SGD Ot Of de in Yin
intot

Computational advantages of SGD are clear

Further SGD Converges



Strongly convex function

Def f is µ strongly convex if
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Any
For differentiable f
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For twile diffible f
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Remark Strictionexity is f x at Xy A f a fly
f strictly convex f convex

f strongly convex f strictly Convex

strict convexity does not require p ffr 70
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