A crash course in unconstrained optimizedian

$$ke^{3true^{-5}}$$
 A crash course in unconstrained optimizedian
 $ke^{3true^{-5}}$ $kethelew/statistics
 ke^{3true} $f(\theta)$
 $\theta \in \mathbb{R}^{k}$
 $(x) f(\theta^{k}) \leq f(\theta)$ $\forall \theta \in \mathbb{N}_{\mathbb{C}}(\theta^{k})$ for some for
 $\mathbb{N}_{e}(\theta^{k}) = \int \theta |10-\theta^{k}|| < \xi]$
 θ^{k} is a globel minima if
 $(xh) f(\theta^{k}) \leq f(\theta)$ $\forall \theta \in \mathbb{R}^{k}$
 $f(xh) f(\theta^{k}) \leq f(\theta)$ $\forall \theta \in \mathbb{R}^{k}$
Strict local (global minima if the inequality in ($\theta = 1$)/ex)
 k strict
First-order necessary conditions.
Let θ^{k} be a local minima of $f:\mathbb{R}^{k} \to \mathbb{R}$.
Suppose that f is continuously differentiable.
Then $\nabla f(\theta^{k}) = 0$
Also, $T_{k} f$ is twice continuously differentiable, then
 $\nabla^{2} f(\theta^{k})$ is positive semi-definite
 $(F, S, d.)$
Aside: $A \leq B$ if $(B-A)$ is $F-S-d$ $e.g. A \leq AI$$

Remark: O f is concave if (-f) is conver 2 f is strictly convex if the inequality in (xe) & strict. H x + y, 2 = (0,1) Examples: 1 Linear tunctions are convex 2 Any norm is conver 3 Weighted Sum of Convex Functions is convex inder is convex is convex fie <u>T</u> then h(x)= sup f; (x) in convex. THI Differentrable convex functions: Let CSRd be convex and f:Rd ->R be a " Lifferentiable" Convex function. Then (**) (1) f is convex (=) f(2) > f(a)+ (2-2) \ \ f(a), Yr,z€C (ii) If the inequality in (***) is strict, then f is strictly Convex.

Strongly - convex functions
Def: f is
$$\mu$$
-strongly convex if
 $f((1-\lambda)x + \lambda_g) \in (1-\lambda)f(x) + \lambda f(g) - \frac{\mu}{2}(1-\lambda) 1g-2R$
 $f(g) \equiv f(x) + \sqrt{f(g)}(g-x) + \frac{\mu}{2} 11g-2R^2$
 $f(x) = \frac{\pi}{2} f(x) = \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$
 $f(x) = \frac{\pi}{2} f(x) = \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$
 $f(x) = \frac{\pi}{2} + \frac{\pi}{2} +$

Other conditions for strong convertify $f(y) \ge f(x) + \sum f(x)^T (y-x) + M \|y-x\|^2$ $(\nabla f(1) - \nabla f(2))^T (\chi - 2) = M ||\chi - 2||^2$ " Converge etto me Proof hint' Show g(x) = f(x) - Mux11² is conver f We $(\nabla g(x) - \nabla g(y))^T (x - y) 7 D$ Pb) f is p-strongly convex $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (solition)}$ $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (solition)}$ $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (soliticn)}$ $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (soliticn)}$ $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (soliticn)}$ $= -f(x) - f(x^{\infty}) \leq \frac{1}{2} ||\nabla f(x)||^{2} \rightarrow PL \text{ (soliticn)}$ ¥٤: $f(y) - f(x) \ge \nabla f(x) \cdot (y - x) + M \cdot 1|y - x||^2$ We know $\min_{y} \left(f(y) - f(x) \right) \geq \min_{y} \left(\nabla f(x)^{T} (y - x) + \frac{1}{2} \|y - x\|^{2} \right)$ Ldifferentiate $f(x^{\infty}) - f(x)$ V+(=)+ M(J=2)=0 $\int_{-1}^{-1} \nabla f(x) + 2$ $\frac{f(x^{*}) - f(x) \geq -1}{M} \frac{||\nabla F(x)||^{2}}{2} + \frac{1}{2} \frac{||\nabla F(x)||^{2}}{M}$ $(01) f(x^{2}) - f(x) = -\frac{1}{1} ||xf(x)||^{2}$

