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Abstract— We propose for the first time two reinforcement
learning algorithms with function approximation for average
cost adaptive control of traffic lights. One of these algorithms
is a version of Q-learning with function approximation while
the other is a policy gradient actor-critic algorithm that in-
corporates multi-timescale stochastic approximation. We show
performance comparisons on various network settings of these
algorithms with a range of fixed timing algorithms, as well as a
Q-learning algorithm with full state representation that we also
implement. We observe that whereas (as expected) on a two-
junction corridor, the full state representation algorithm shows
the best results, this algorithm is not implementable on larger
road networks. The algorithm PG-AC-TLC that we propose is
seen to show the best overall performance.

Index Terms— Traffic signal control, reinforcement learning,
Q-learning, policy gradient actor-critic.

I. INTRODUCTION

Traffic signal control forms a crucial component of any in-

telligent transportation system. Designing an adaptive traffic

signal control algorithm that maximizes the long-term traffic

flow is an extremely challenging problem, considering the

fact that a model of the system is not available in most

of the real traffic environments. A second handicap to the

traffic light control (TLC) algorithm is that the critical inputs

- queue lengths and/or elapsed times (since signal turned red)

on the lanes of the road network - are hard to obtain precisely

in realistic settings and the TLC algorithm has to work

with coarse estimates of these inputs. It is thus necessary

to develop a TLC algorithm that minimizes a long-term cost

objective using the coarse inputs of queue lengths and/or

elapsed times and without assuming a system model. The

TLC algorithm should be online, computationally efficient

and possess the necessary convergence properties.

The problem that we consider in this paper is one of

designing TLC algorithms that minimize a long term aver-

age cost objective, while possessing the properties outlined

above. Reinforcement learning (RL) is an efficient technique

for developing model-free algorithms that minimize a long-

term cost objective based on sample observations from sim-

ulations. RL based TLC algorithms that minimize a long run

discounted cost have been proposed in literature, for instance,

in [1] and [2]. However, to the best of our knowledge,

we are the first to design RL-based TLC algorithms that

minimize a long-run “average cost” criterion. The motivation

behind using an infinite horizon average cost framework is to
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understand the steady state behaviour of the traffic control

system. We develop two new TLC algorithms, one based

on Q-learning and the other a policy gradient actor critic

algorithm for solving the traffic signal control problem in

an average cost setting. While the Q-learning based TLC

algorithms ([1], [2]) proposed for discounted cost problem

are stochastic approximation analogues of the value iteration

algorithm, they do not extend easily to the average cost

setting. The Q-learning based TLC for average cost that we

develop here is based on relative Q-value iteration scheme

and has been adapted from [3]. The second TLC algorithm

that we develop is a two-timescale actor critic algorithm

that incorporates policy gradient for the actor recursion and

temporal difference learning for the critic.

We now review some TLC algorithms previously proposed

in the literature. Off-line techniques for traffic signal control

have been proposed, for instance in [4]. The signal timings

in these are generated off-line, using for example a static

optimizer (see [4]), and the traffic light controllers at the

intersections are programmed accordingly. In [5], the authors

develop an optimization model of the traffic signal control

problem. Genetic algorithm based approaches have been

proposed, for instance in [6], [7]. These are heuristic tech-

niques to solve the traffic signal optimization problem. Some

approaches based on neural networks have been proposed,

for instance in [8], [9]. They use SPSA gradient estimates in

a neural network (NN) feedback controller to optimize traffic

signal timings. A distributed multi-agent model for traffic

signal control is presented in [10]. Markov decision process

(MDP) based approach for traffic light control has been

proposed in [11]. This approach however requires a precise

model of the system, which in general is hard to obtain in

real systems. An adaptive traffic light control algorithm that

uses approximate dynamic programming is proposed in [12].

Reinforcement learning with full state representation has

been proposed in [1]. However, only the case of an isolated

traffic junction is considered there. In [2], an RL algorithm

with function approximation together with certain graded-

feedback policies is proposed. This algorithm is seen to per-

form well over many road traffic network scenarios involving

several junctions. However, this algorithm is again for the

discounted cost setting. Unlike RL algorithms based on full-

state representations, the computational effort required by

the algorithm in [2] remains reasonable even for large scale

networks because of the use of function approximation. We

develop in this paper, the first RL based TLC algorithms with

function approximation that minimize a long term average

cost objective. Whereas a discounted cost objective is more
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suitable for optimizing short term performance, the long run-

average cost objective assigns equal weightage to all stages

and is concerned with the steady-state system behaviour.

A. Our Contributions

• We develop, for the first time, two reinforcement learn-

ing algorithms with function approximation for the

problem of average cost traffic signal control.

• Our first algorithm is a Q-learning based TLC algorithm

and is the function approximation analogue of the Q-

learning with average cost algorithm proposed in [3].

• The second algorithm is a policy gradient actor critic

based TLC algorithm. This algorithm is also shown to

converge to the optimal sign configuration policy that

minimizes the long run average cost.

• Both our algorithms require only coarse information on

the level of congestion (for instance, low, medium or

high) and do not require precise queue length informa-

tion. This in unlike the algorithm of [1] that requires

precise queue length estimates.

• We study the performance of our TLC algorithms in

the context of a two-junction corridor, a five-junction

corridor and a 2x2-grid network. From the performance

comparisons of our algorithms between themselves and

with a range of fixed timing TLC algorithms, we

observe that the policy gradient actor critic based TLC

algorithm performs the best, while also converging

rapidly to the optimal sign configuration policy.

The rest of the paper is organized as follows: In Section

II, we describe in detail the problem framework. In Section

III, we present our learning algorithms with average cost

for traffic light control. In Section IV, we discuss the

implementation of the various TLC algorithms and present

the performance simulation results. Finally, in Section V we

provide the concluding remarks.

II. THE TRAFFIC SIGNAL CONTROL PROBLEM

We consider the problem of finding an optimal schedule

for the sign configuration of a traffic junction, with the aim

of maximizing the traffic flow. The sign configuration here

refers to the signals associated with a phase i.e., those that

can be switched to green simultaneously. The traffic junction

controller is assumed to periodically receive information

about congestion (on individual lanes) through an array of

sensors that are assumed embedded in the roads leading to

the junction. In essence, the problem is to tune the sign

configuration policy to the optimum that minimizes a certain

long term average cost objective.

The traffic light control (TLC) algorithm uses as input -

coarse estimates of the queue lengths along the individual

lanes leading to the intersection and the time elapsed since

the last signal light switch over. The queue length input is

considered to minimize the average junction waiting times of

the road users, while the elapsed time input ensures fairness

i.e., no lane is allowed to stay green for a long time at the

cost of other lanes.

We formulate this problem in the MDP setting and develop

two TLC algorithms - one based on Q-learning and the other

based on policy gradient actor-critic. An MDP framework

[13] requires the identification of states, actions and costs,

that we present below for our problem.

The state is the vector of queue lengths and the elapsed

times since the signal turned red on those lanes that have

a traffic signal at the various junctions in the road network.

We assume centralized control for this purpose where the

controller receives this information from the various lanes

and makes decision on which traffic lights to switch green

during a cycle. We do not assume that perfect information

(on the queue lengths and signal timings) is available to the

controller. Instead, the TLC algorithm that we subsequently

present, work with coarse estimates of congestion levels

on the various lanes of the road network. The controller’s

decision on which lights to switch green during a cycle

is relayed back to the individual TLCs. We assume no

propagation and feedback delays for simplicity. The elapsed

time counter for a lane with green signal stays at zero till

the time the signal turns red. For a road network with m

junctions and a total of K signalled lanes across junctions,

the state at time n is

sn = (q1(n), . . . , qK(n), t1(n), . . . , tK(n)), (1)

where qi(n) is the queue length on lane i at time n and ti(n)
is the elapsed time for the red signal on lane i at time n.

The actions comprise the sign configurations across junc-

tions and have the form: an = (a1(n), . . . , am(n)), where

ai(n) is the sign configuration at junction i in the time slot

n and m is the number of junctions in the road network.

As with [2], the cost function here is designed to ease

traffic congestion by minimizing the waiting queue lengths

and at the same time, ensuring fairness so that no lane suffers

being red for a long duration. This is achieved by letting

the cost function be the sum of queue lengths and elapsed

times on the lanes of the road network. Further, prioritization

of traffic i.e., giving more importance to traffic on main

roads than on the side roads is also incorporated into the

cost function. Let Ip denote the set of indices for lanes

whose traffic should be given higher priority. Then the cost

c(sn, an) has the form

c(sn, an)
△
= cn+1 =

r1 ∗ (
∑

i∈Ip
r2 ∗ qi(n) +

∑

i/∈Ip
s2 ∗ qi(n))

+s1 ∗ (
∑

i∈Ip
r2 ∗ ti(n) +

∑

i/∈Ip
s2 ∗ ti(n)),

(2)

where ri, si ≥ 0 and ri + si = 1, i = 1, 2. Further, r2 > s2.

Thus, lanes in Ip are assigned a higher cost and hence a cost

optimizing strategy must assign a higher priority to these

lanes in order to minimize the overall cost.

III. OUR TLC ALGORITHMS

The MDP for the problem of traffic signal control cor-

responds to the sequence {sn} with which is associated

the control sequence {an}. Let p(i, j, a) denote the tran-

sition probability of the MDP for transiting from state i
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to j under action a. These probabilities satisfy p(i, j, a) ∈
[0, 1] ∀i, j ∈ S, a ∈ A(i) and that

∑

j∈S p(i, j, a) = 1,

for any given i ∈ S and a ∈ A(i). We consider an

infinite horizon average cost framework. Our aim is to find

a sequence {an} of actions so as to minimize the “average

cost”

λ̂ = lim
N→∞

1

N

N−1
∑

n=0

c(sn, an)
△
= lim

N→∞

1

N

N−1
∑

n=0

cn+1, (3)

starting from any given state i (i.e., s0 = i).

Let h(i) be the differential cost function corresponding to

state i. Then h(.) satisfies

λ+ h(i) = min
a

∑

j

p(i, a, j)(c(i, a) + h(j)), ∀i ∈ S, (4)

where λ is the optimal cost.

Define the Q-factors Q(i, a), i ∈ S, a ∈ A(i) as

Q(i, a) =
∑

j

p(i, a, j)(c(i, a) + h(j)). (5)

The Q-factors then satisfy the Bellman equation of optimality

λ+Q(i, a) =
∑

j

p(i, a, j)(c(i, a) + min
b∈A(j)

Q(j, b)), (6)

for all i ∈ S, a ∈ A(i).
Note that in order to solve this equation, one requires

the knowledge of the transition probabilities p(i, a, j) that

constitute the system model. Moreover, the state and action

spaces should be manageable in size.

The Q-learning algorithm with full state representation

(that we present next) addresses the case when the sys-

tem model is not known, however, state and action spaces

are manageable. Further, our next two algorithms viz., Q-

learning with function approximation and policy gradient

actor-critic in addition to considering the case of ‘lack of

system model’, also effectively handle large state and action

spaces.

A. Q-learning with full state representations (QTLC-FS-AC)

Our QTLC-FS-AC algorithm estimates the ‘Q-factors’

Q(i, a) of all feasible state-action tuples (i, a) i.e., those with

i ∈ S and a ∈ A(i) using the relative value iteration of Q-

factors and has been adapted from [3]. Let sn+1(i, a) denote

the state of the system at instant (n + 1) when the state at

instant n is i and action chosen is a. Let Qn(i, a) denote the

Q-value estimate at instant n associated with the tuple (i, a).
The relative Q-value iteration (RQVI) scheme is

Qn+1(i, a) =
∑

j p(i, a, j)(cn+1 + minb∈A(j)Qn(j, b))

−minr∈A(s)Qn(s, r).
(7)

The QTLC-FS-AC algorithm is a stochastic approximation

analogue of the RQVI and updates according to

Qn+1(i, a) = Qn(i, a) + α(n)(cn+1 + minr∈A(j)Qn(j, r)
−minb∈A(s)Qn(s, b)),

(8)

for all feasible (i, a) tuples. Here α(n), n ≥ 0 are the

step-sizes that satisfy
∑

n α(n) = ∞ and α2(n) <

∞. Upon convergence, one obtains the optimal Q-values

Q∗(i, a) that are seen to satisfy the Bellman equation (6)

and mina∈A(i)Qn(i, a) gives the optimal differential cost

h∗(i). The optimal action in state i then corresponds to

argminb∈A(i)Q
∗(i, b). A convergence proof of this algo-

rithm can be found in [3].

B. Q-learning with function approximation (QTLC-FA-AC)

While the QTLC-FS-AC algorithm is useful in small state

and action spaces, it becomes computationally expensive for

larger road networks involving multiple junctions. This is

because of the exponential increase in the sizes of the state

and action spaces with the number of junctions. To alleviate

this problem of curse of dimensionality, we incorporate

feature based methods. These methods handle this problem

by making computational complexity manageable. While the

QTLC-FS-AC algorithm as such requires complete state in-

formation and so is less efficient, its function approximation

based variant parametrizes the value function.

We now present QTLC-FA-AC, a Q-Learning based TLC

that uses function approximation. Here we associate with

each state-action tuple (i, a), a state-action feature denoted

by φi,a. The Q-function is then approximated as

Q∗(i, a) ≈ θTφi,a. (9)

Let sn, sn+1 denote the state at instants n, n+1, respectively,

measured online. Let θn be the estimate of the parameter θ

at instant n. Let s be any fixed state in S.

The algorithm QTLC-FA-AC uses the following update

rule:

θn+1 = θn + α(n)φsn,an
(cn+1 + minv∈A(sn+1) θ

T
nφsn+1,v

−minr∈A(s) θ
T
nφs,r),

(10)

where θ0 is set arbitrarily. In (10), the action an is chosen

in state sn according to an = argminv∈A(sn) θ
T
nφsn,v. For

our experiments, we chose the following features (as in [2]):

φsn,an
= (φq1(n), . . . , φqN (n), φt1(n), . . . , φtN (n),

φa1(n), . . . , φam(n))
T (11)

where for some given thresholds L1, L2 (on queue

lengths) and T 1 (on elapsed times),

φqi(n) =







0 if qi(n) < L1
0.5 if L1 ≤ qi(n) ≤ L2
1 if qi(n) > L2

φti(n) =

{

0 if ti(n) ≤ T 1
1 if ti(n) > T 1

Note that the parameter θn has dimension the same as

that of φsn,an
. Again the advantage here is that instead of

updating the Q-values for each feasible (s, a)-tuple as before,

one estimates these according to the parametrization (9).

C. Policy Gradient Actor-Critic TLC (PG-AC-TLC)

Actor critic algorithms are reinforcement learning algo-

rithms that are based on the policy iteration (PI) method

for MDP. The classical PI algorithm proceeds via two loops
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- the inner loop performs policy evaluation for a given

policy while the outer loop performs policy improvement.

Actor-critic algorithms use two-timescale stochastic approx-

imation in order to perform both updates (evaluation and

improvement) simultaneously at each instant. The difference

in step-size schedules results in an appropriate algorithmic

behaviour.

Our PG-AC-TLC algorithm incorporates policy gradients

for the actor and temporal difference learning in the critic

and has been adapted from [14]. The idea here is that

the policy is considered to be parametrized, in addition to

the value function. We consider a class of parametrized

randomized policies and linear function approximation for

the value function. Specifically, we assume that policies

πθ(i, a), parametrized by θ ∈ ℜd have the form

πθ(i, a) =
eθ⊤φi,a

∑

a′∈A(i) e
θ⊤φi,a′

, ∀s ∈ S , ∀a ∈ A, (12)

where each φi,a is a d-dimensional feature vector as before.
Further, we let V π(i) ≈ v⊤fi, i ∈ S, to be the approxima-

tion to the differential cost function, where fi, i ∈ S are d̂-

dimensional state features and v the corresponding parameter

vector. Let ψia = ∇ log πθ(i, a) denote the compatible state-

action features. When πθ(i, a) are selected as in (12), it can

be seen that ψia = φi,a −
∑

a′∈A(i) π(i, a′)φi,a′ .

The PG-AC-TLC algorithm is as follows:

Ĵn+1 = (1 − αn)Ĵn + αncn+1, (13)

δn = cn+1 − Ĵn+1 + v⊤n fsn+1
− v⊤n fsn

(14)

vn+1 = vn + αnδnfsn
, (15)

θn+1 = Γ(θn + βnδnψsnan
), (16)

Here, {sn} is the sequence of states visited by the MDP

i.e., we consider a single trajectory of states for the MDP.

Further {an} is the sequence of actions obtained upon

following the randomized policy π. Here αn and βn, n ≥ 0
are two step-size sequences that satisfy

∑

n

α(n) =
∑

n

β(n) = ∞;
∑

n

(α2
n+β2

n) <∞, lim
n→∞

βn

αn
= 0.

It has been shown in [14] that if one replaces

δn by δπ
n

△
= cn+1 − Ĵn+1 + vπ⊤

n fsn+1
− vπ⊤

n fsn
, where

limn→∞ vn = vπ (assuming fixed π), then

E[δπ
nψsnan

|θ] = ∇J(θ) + ε(θ),

where ε(θ) is an error term that arises from the use of

linear function approximation. Further, it has been shown in

[14] that if ||ε(θ)|| is “small”, then θn, n ≥ 0 given by the

recursions (13) - (16) converge asymptotically to a “small”

neighbourhood of the local minima of J(.).

IV. SIMULATION EXPERIMENTS

A. Implementation

We use the Green Light District (GLD) simulator ([15])

for implementation and evaluation of our TLC algorithms.

We implement our TLC algorithms - QTLC-FS-AC and

QTLC-FA-AC and PG-AC-TLC, respectively. Recall that

(a) Two-Junction Corridor

(b) Five-Junction Corridor

(c) 2x2-Grid Network

Fig. 1. Road Networks used for our Experiments

whereas QTLC-FS-AC incorporates full state representa-

tions, the other two algorithms viz., QTLC-FA-AC and PG-

AC-TLC incorporate function approximation. For the sake of

comparison, we also implement a range of fixed timing TLC

algorithms that periodically cycle through the list of feasible

sign configurations irrespective of the traffic conditions. The

cycling period here is a tunable parameter and we show the

results of the performance of these algorithms for various

cycling periods.

We consider three different network scenarios: a two-

junction corridor, a five-junction corridor and a 2x2-grid

network. We show snapshots of these networks obtained from

the GLD software in Fig. 1. The simulations are conducted

for 5000 cycles in all algorithms. Each road user’s destination

is fixed randomly, using a discrete uniform distribution, to

choose one of the edge nodes. The spawn frequency i.e., the

rate at which traffic is generated randomly in GLD, was set

in a way that ensures that the proportion of cars flowing on

the main road to those on the side roads is in the ratio 100:5.

The performance of QTLC-FS-AC is tested only on the

two-junction corridor while that of QTLC-FA-AC and PG-

AC-TLC is tested on all the settings in Fig. 1. QTLC-

FS-AC could not be implemented on larger road networks

because of the exponential blow up in computational com-

plexity (described previously) with the numbers of lanes

1643



 0

 10

 20

 30

 40

 50

 60

 70

 0  1000  2000  3000  4000  5000

D
e
la

y

Cycles

QTLC-FA-AC
Fixed10
Fixed20
Fixed30

QTLC-FS-AC
PG-AC-TLC

(a) Average junction waiting time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  1000  2000  3000  4000  5000

N
o
. 

o
f 

A
rr

iv
e
d
 R

o
a
d
 U

s
e
rs

Cycles

QTLC-FA-AC
Fixed10
Fixed20
Fixed30

QTLC-FS-AC
PG-AC-TLC

(b) Total Arrived Road Users

Fig. 2. Performance Comparison of TLC Algorithms - Two-Junction
Corridor Case

and junctions (when full state representations are used). On

the other hand, QTLC-FA-AC and PG-AC-TLC are easily

implementable even on larger road networks, and require

much less computation.

For all the three TLC algorithms, we set the weights in the

single stage cost function c(s, a) in (2) as r1 = s1 = 0.5 and

r2 = 0.6, s2 = 0.4. This assignment gives a higher priority

to the lanes on the main road than those on the side roads,

while according equal weightage to both queue length and

elapsed time components of the cost function.

B. Results

Figs. 2, 3 and 4 show the plots of average junction waiting

time and total arrived road users using the various algorithms

on the three road network settings. From the above plots,

we observe that the policy gradient actor critic based TLC

algorithm (PG-AC-TLC) shows the best overall performance

as compared to the other TLC algorithms considered. In the

case of the two-junction corridor, QTLC-FS-AC shows the

best results. This is however expected because QTLC-FS-

AC uses the knowledge of the full state whereas the PG-

AC-TLC and QTLC-FA-AC use only coarse information on

whether the level of congestion is in the low, medium or

high range, and also whether the elapsed time is below or

above a threshold.
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Fig. 3. Performance Comparison of TLC Algorithms - 2x2-Grid Network
Case

We also observe that the parameter θ converges in the

case of PG-AC-TLC algorithm, while the same is not true

of QTLC-FA-AC algorithm. This is evident in Fig. 5 where

the convergence of θ for PG-AC-TLC and oscillation of θ for

QTLC-FA-AC are illustrated using one of the co-ordinates of

θ for the case of a 2x2-grid network. This is because QTLC-

FA-AC suffers from the off-policy problem [13] unlike PG-

AC-TLC that does not suffer from this problem because of

the use of multi-timescale stochastic approximation.

V. CONCLUSIONS AND FUTURE WORK

Our goal in this paper was to design an algorithm for

average cost traffic signal control in order to optimize steady

state system performance. We developed two reinforcement

learning algorithms with average cost - one an analogue of

Q-learning in a function approximation setting and another a

policy gradient actor critic algorithm. From the performance

comparisons, we observe that the policy gradient actor critic

algorithm showed the best overall performance. On a two-

junction corridor, the full state representation algorithm was

better, however, it suffers from the limitation of not being

implementable on larger road networks unlike algorithms that

use function approximation.

In conclusion, we mention two important future work

directions below:
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Fig. 4. Performance Comparison of TLC Algorithms - Five-Junction
Corridor Case

• Apart from the policy gradient based actor-critic al-

gorithms, there are other algorithms based on natural

gradients proposed in [14]. It would be interesting to

develop TLC algorithms that combine natural gradients

and function approximation for the problem of average

cost traffic control.

• We used arbitrarily set, fixed values for the thresholds

L1, L2, T 1 in our TLC algorithms. An interesting future

research direction will be to develop a threshold tuning

algorithm that combines with policy optimization in

order to find an optimal policy via an optimal choice of

thresholds.
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