
412 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

Reinforcement Learning With Function
Approximation for Traffic Signal Control

Prashanth L. A. and Shalabh Bhatnagar, Senior Member, IEEE

Abstract—We propose, for the first time, a reinforcement learn-
ing (RL) algorithm with function approximation for traffic signal
control. Our algorithm incorporates state-action features and is
easily implementable in high-dimensional settings. Prior work,
e.g., the work of Abdulhai et al., on the application of RL to
traffic signal control requires full-state representations and can-
not be implemented, even in moderate-sized road networks, be-
cause the computational complexity exponentially grows in the
numbers of lanes and junctions. We tackle this problem of the
curse of dimensionality by effectively using feature-based state
representations that use a broad characterization of the level
of congestion as low, medium, or high. One advantage of our
algorithm is that, unlike prior work based on RL, it does not
require precise information on queue lengths and elapsed times
at each lane but instead works with the aforementioned described
features. The number of features that our algorithm requires is
linear to the number of signaled lanes, thereby leading to several
orders of magnitude reduction in the computational complexity.
We perform implementations of our algorithm on various settings
and show performance comparisons with other algorithms in the
literature, including the works of Abdulhai et al. and Cools et al.,
as well as the fixed-timing and the longest queue algorithms. For
comparison, we also develop an RL algorithm that uses full-state
representation and incorporates prioritization of traffic, unlike the
work of Abdulhai et al. We observe that our algorithm outper-
forms all the other algorithms on all the road network settings that
we consider.

Index Terms—Q-learning with full-state representation (QTLC-
FS), Q-learning with function approximation (QTLC-FA), rein-
forcement learning (RL), traffic signal control.

I. INTRODUCTION

W ITH increasing traffic in urban areas and limitations of
road infrastructure, any attempt to improve the traffic

flow of the system would involve an intelligent design of traffic
signal timing for the junctions. The traffic junctions play a
very important role in determining the congestion state of the
road network. Many traffic junctions worldwide currently use
fixed signal timings, i.e., they periodically cycle through the
sign configurations in a round-robin manner. Although such a
strategy is easy to implement, it does not consider the actual
traffic conditions and may result in more congestion. In this

Manuscript received December 22, 2009; revised August 20, 2010 and
September 20, 2010; accepted October 30, 2010. Date of publication
December 6, 2010; date of current version June 6, 2011. This work was
supported in part by the Automation Systems Technology Center, which is a
program of the Department of Information Technology, Government of India.
The Associate Editor for this paper was S. S. Nedevschi.

The authors are with the Department of Computer Science and
Automation, Indian Institute of Science, Bangalore 560 012, India (e-mail:
prashanth@csa.iisc.ernet.in; shalabh@csa.iisc.ernet.in).

Digital Object Identifier 10.1109/TITS.2010.2091408

paper, we study the use of a reinforcement learning (RL)-based
traffic control system. The objective is to maximize traffic flow
by performing adaptive control of traffic lights at intersections.
Sensors, which are placed along the lanes that lead to a junction,
periodically convey the traffic information to a controller or
agent at the junction, which then decides on the signal timings.

In some body of work on adaptive traffic control, the usage
of neural network (NN)-based controllers is recommended. For
instance, in [3], simultaneous perturbation stochastic approx-
imation (SPSA)-based gradient estimates are used in an NN
feedback controller to optimize system performance. The idea
is to develop a function that takes in current traffic informa-
tion and outputs the signal timings. This function is approx-
imated through an NN. In [4] and [5], the aforementioned
NN-SPSA algorithm was studied through simulations on the
mid-Manhattan, New York City, network, and it was found to
give a 10% reduction in the vehicle waiting times compared to
the previously used strategy employed. In [6], a NN-based traf-
fic signal control approach in a multiagent system is presented
and compared against an existing traffic control algorithm, and
an SPSA-NN multiagent traffic control method is developed.

In some other work, [7] discusses a 0–1 mixed-integer linear
programming formulation of the traffic signal control problem.
A distributed-multiagent-based approach for traffic signal con-
trol is presented in [8]. In [9] and [10], the traffic management
problem is formulated as an optimization problem and genetic
algorithms are used to solve this problem. Genetic algorithms
provide a heuristic optimization technique for such problems. In
[11], a Markov decision process (MDP) framework for adaptive
control of traffic lights is considered. However, to directly be
applicable, we require complete information on the transition
probabilities of the system, which is often not available. In
[12], a commercial software package (TRANSYT) that uses a
static optimization technique is designed to generate the signal
timings offline based on the traffic conditions measured at
different periods of the day. This technique is, however, not
adaptive. In [13], the authors propose the SCOOT method,
where inductive sensors are used to collect cyclic flow profiles
(CFPs) and relay the same to the central SCOOT optimizer.
The CFPs are then used to estimate the queues, particularly
to calculate the effect of alterations in the predicted signal
timings. The SCOOT optimizer then makes many split and
offset alterations to coordinate the traffic flows. In [14], an
RL algorithm for the case of nonstationary traffic conditions
in a decentralized framework is presented. In [15], an adaptive
dynamic programming technique for traffic signal control is
presented. A controller at each intersection adjusts its signal

1524-9050/$26.00 © 2010 IEEE

L. A. AND BHATNAGAR: RL WITH FUNCTION APPROXIMATION FOR TRAFFIC SIGNAL CONTROL 413

timing based on traffic information and the performance in the
neighboring intersections.

In [1], Q-learning with lookup table representation has been
applied to traffic light control (TLC) on a single junction.
The case of a road network with multiple junctions has not
been considered. Furthermore, the algorithm in [1] has been
developed for the case when all the lanes are given equal
priority for switching lights. Full-state representations cannot
directly be used in the case of road networks with multiple
traffic junctions because of the exponential blowup in the
computational requirements as the number of junctions and,
thereby, the cardinalities of the state and action spaces increase.
In [2], a TLC method, i.e., self-organizing traffic lights (SOTL),
is presented, which switches a lane to green if the elapsed
time since the signal turned red on that lane crosses a certain
threshold, provided that the number of vehicles on the lane is
above another threshold. Thus, although queue lengths on the
signaled lanes of the network are not directly considered in
deciding the sign configuration, an estimate of the congestion
level is used.

In this paper, we use an RL-based algorithm (see [16] and
[17]) to solve the traffic signal control problem. The reason for
using this approach is that RL allows for learning the optimal
strategy for signal timing without assuming any model of the
system. The benefits of using RL are twofold. First, it is model-
free, i.e., it learns and adapts the policy through interaction with
the environment. RL algorithms are online, incremental, and
easy to implement. Second, on high-dimensional state–action
spaces, function approximation techniques in RL can be used
to achieve computational efficiency. Q-learning [18] is an im-
portant and well-studied RL algorithm that is efficient and is
known to converge to the optimal policy. In this paper, we
develop a Q-learning-based TLC algorithm that incorporates
function approximation. Such an algorithm has been applied
for the first time in traffic signal control. Among its many
advantages, it is shown to easily be implementable on a range
of high-dimensional network settings and gives far superior
performance compared with other related algorithms in the
literature. We compare the performance of our algorithm with
a range of algorithms that assign a certain (fixed) traffic light
duration to the various sign configurations. In addition, we com-
pare the performance of our algorithm with an algorithm that
switches traffic lights to green for lanes with the longest queue.
We also show performance comparisons of our algorithm with
the algorithms in [1] and [2]. Furthermore, we develop another
algorithm along the lines of [1] that requires full-state informa-
tion and compare the performance of our algorithm with this
new algorithm.

We now describe comparisons of this paper with prior
work in the literature. The algorithm in [1], despite being a
Q-learning algorithm, requires full-state representations and
cannot be implemented even on road networks of moderate
size. Indeed, the implementation of this algorithm has been
shown in [1] only for the case of a single-junction road network.
On the other hand, we use function approximation, and hence,
our algorithm is found to easily be implementable on larger
road networks such as a 3 × 3-grid and an eight-junction
corridor. We observe that, on a 3 × 3 grid, the cardinality of

the state–action space is nearly 10101, whereas the number of
features that our algorithm requires is only about 200. Thus,
algorithms such as in [1] are not implementable on such road
networks, whereas our algorithm is found to easily be imple-
mentable and gives fast convergence. Although the algorithm
in [2] also requires information on the level of congestion
and elapsed times on the various lanes, it is not based on
RL, unlike our algorithm. Hence, the algorithm in [2] does
not have the advantage of an RL-based algorithm, because it
does not adaptively update its policy using information from
interactions with the environment. The state–action features
that we incorporate require information on whether the level
of congestion on any given lane is low, medium, or high and
whether the elapsed time is below or above a threshold.

For comparison, we further develop another RL algorithm
that requires full-state representations and, unlike [1], incorpo-
rates prioritization in its cost objective. This case is because
our experimental settings are based on scenarios in which
the volume of traffic on the main road is significantly higher
compared to the side roads. Hence, to give higher priority to
main-road traffic, we develop a variant of the algorithm in [1]
that assigns a higher cost to traffic on the main roads than on the
side roads. We implemented this aforementioned algorithm and
the algorithms proposed in [1] only on a two-junction corridor
setting, because these algorithms could not be implemented
on larger road networks due to the exponential increase in
the aforementioned computational complexity. However, we
found that, even on a two-junction corridor, our algorithm with
function approximation outperformed both algorithms.

Next, unlike [9], [19], and [20], Q-learning in the case of full-
state representation can be shown to converge to an optimal
policy. The same under function approximation converges to
an approximately optimal policy under some conditions; see
[21]. Although we also assume that the underlying process is
an MDP, unlike [11], we do not require information on the
transition probabilities of the system, which are hard to obtain
in any (real) system. On the other hand, our algorithm directly
works with observed data in terms of the level of congestion
and elapsed times on the signaled lanes of the road network.
Furthermore, unlike [1] that considers only a single-junction
scenario, we develop and apply our algorithm on road networks
with multiple junctions. As aforementioned, we propose and
apply Q-learning with function approximation in the case of
larger road networks, where full-state representations cannot be
used because of the curse of dimensionality.

A. Our Contributions

Our contributions are listed as follows.

• We consider the problem of adaptive signal control of
traffic lights at junctions and develop a Q-learning algo-
rithm with feature-based state–action representations and
function approximation. To the best of our knowledge, RL
with function approximation for traffic signal control has
been proposed here for the first time in the literature.

• For comparison, we also develop a Q-learning-based TLC
algorithm that uses full-state representations. Unlike [1],

414 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

we incorporate prioritization of traffic in the cost function
for this algorithm.

• We study the performance of our function-approximation-
based RL algorithm on the following road network set-
tings: 1) a two-junction corridor; 2) a 2 × 2 grid network;
3) a 3 × 3 grid network; and 4) an eight-junction corridor.
We compare the performance of our algorithm with vari-
ous existing TLC algorithms—fixed timing, longest queue
(LTLC), and SOTL from [2]—as well as the Q-learning-
based TLC algorithms that use full-state representations,
i.e., the algorithm that we develop for prioritized traffic
and the algorithm based on [1]. Our algorithm is shown
to easily be implementable over all network settings, con-
verges fast, and consistently outperforms all the other TLC
algorithms considered.

We implement our algorithms on an open-source Java-based
software, i.e., Green Light District (GLD) [22]. The other TLC
algorithms with which we compare the performance of our
algorithm were also implemented in GLD.

The rest of this paper is organized as follows. In Section II,
we describe in detail the traffic signal control problem formu-
lation using the MDP framework. To put things in perspective,
we first present in Section III the Q-learning algorithm based
on full-state representation for prioritized traffic, which we
develop for comparison. Next, in Section IV, we present
our Q-learning algorithm with function approximation. In
Section V, we discuss the implementation of the various TLC
algorithms and present the performance simulation results.
Finally, in Section VI, we provide the concluding remarks.

II. TRAFFIC CONTROL PROBLEM

We consider the problem of finding an optimal schedule
for the sign configurations at traffic junctions with the aim of
maximizing traffic flow. The signals associated with a phase,
i.e., signals that can simultaneously be switched to green form
a sign configuration.

We formulate the traffic signal control problem in the MDP
framework and assume that control decisions are made by
a centralized controller. For a network of traffic junctions,
centralized control has been considered, e.g., in [23]. An MDP
formulation requires the characterization of states, actions,
costs, and the objective criterion. We explain the basic MDP
framework as follows.

A. MDP Framework

A stochastic process {Xn} that takes values in a set S
is called an MDP if its evolution is governed by a control-
valued sequence {Zn} so that the following controlled Markov
property is satisfied:

Pr(Xn+1 = j|Xn = i, Zn = a,Xn−1 = in−1,

Zn−1 = an−1, . . . , X0 = i0, Z0 = a0) = p(i, j, a) (1)

for any i0, . . . , in−1, i, j, a0, . . . , an−1, a, in appropriate sets.
We assume here that, if Xn = i for any n, the set of feasible

actions or controls is A(i). Thus, in (1), a ∈ A(i), an−1 ∈
A(in−1), and so on. Let A = ∪i∈SA(i) denote the control space
(i.e., the set of all controls). We assume that both S and A are
finite sets. Depending on the current system state, the decision
maker or controller picks a control in a way to minimize a
long-term cost. We consider the infinite-horizon discounted-
cost criterion for this purpose. Let k(i, a) denote the single-
stage cost incurred when the system is in state i and action a ∈
A(i) is chosen. Furthermore, when the state is i and action a is
chosen, the next state is j, with a probability of p(i, j, a). These
probabilities satisfy p(i, j, a) ∈ [0, 1], ∀i, j ∈ S, a ∈ A(i) and
that

∑
j∈S p(i, j, a) = 1, for any given i ∈ S and a ∈ A(i). Let

γ ∈ (0, 1) denote the discount factor.
A sequence of functions π = {μ1, μ2, . . .}, with each μn :

S → A, n ≥ 1, is said to be an admissible policy if μn(i) ∈
A(i), ∀i ∈ S. This condition corresponds to the choice of con-
trol Zn = μn(Xn), ∀n. Let Π denote the set of all admissible
policies. An admissible policy π = {μ1, μ2, . . .} with each
μn = μ, n ≥ 1 is said to be a stationary deterministic policy
(SDP). By a common abuse of notation, we simply refer to μ as
an SDP.

For a given admissible policy π ∈ Π, the value function V π :
S → R is defined by

V π(i) = E

[∞∑
m=0

γmk (Xm, μm(Xm)) |X0 = i

]
(2)

for all i ∈ S. Then, the aim is to find an optimal policy π∗

that gives the optimal value function V ∗ : S → R, which is
defined by

V ∗(i) = min
π∈Π

V π(i). (3)

It is well known (see [24]) that an SDP achieves the optimal
policy, i.e., the policy that corresponds to the optimal value
V ∗(i), ∀i ∈ S. Furthermore, the optimal value function V ∗(·)
satisfies the Bellman equation of optimality as

V ∗(i) = min
a∈A(i)

⎛
⎝k(i, a) + γ

∑
j∈S

p(i, j, a)V ∗(j)

⎞
⎠ (4)

for all i ∈ S.
To solve (4), we require knowledge of the transition proba-

bilities p(i, j, a). Moreover, the number of states (i.e., the car-
dinality of S) can be very large such that solving (4) becomes
computationally infeasible. The QTLC-FS that we describe in
Section III tackles the first problem alone (not the second),
whereas the Q-learning algorithm with function approxima-
tion that we subsequently present in Section IV tackles both
problems, i.e., the lack of model information and the curse of
dimensionality.

B. Traffic Control Problem as an MDP

We consider a road network with m junctions, m > 1. Each
junction has multiple crossroads, with each road having j lanes.
Our algorithms require a description of states, actions, and
costs. The state is the vector of queue lengths and the elapsed
times. The elapsed time on a lane is the time since the signal

L. A. AND BHATNAGAR: RL WITH FUNCTION APPROXIMATION FOR TRAFFIC SIGNAL CONTROL 415

turned red on that lane. This quantity is zero for lanes on which
the signal is green. Control decisions are made by a centralized
controller that receives the state information from the various
lanes and makes decision on which traffic lights to switch
green during a cycle. This decision is then relayed back to the
individual junctions. We assume no propagation and feedback
delays for simplicity. The elapsed time counter for a lane with
a green signal stays at zero until the time that the signal turns
red. For a network with a total of N signaled lanes, the state at
time n is

sn = (q1(n), . . . , qN (n), t1(n), . . . , tN (n))T

where qi(n) is the queue length on lane i at time n, and ti(n) is
the elapsed time for the red signal on lane i at time n.

The actions an comprise the sign configuration (which
is a feasible combination of traffic lights to switch) in the
m junctions of the road network and have the form an =
(a1(n), . . . , am(n))T , where ai(n) is the sign configuration at
junction i in time slot n. We consider only sign configurations
that are feasible in the action set and not all possible red–green
combinations of traffic lights (which would exponentially grow
with the number of traffic lights). Thus, the action set A(sn) =
{feasible sign configurations in state sn}.

The cost function here has two components. The first com-
ponent is the sum of the queue lengths of the individual lanes,
and the second component is the sum of the elapsed times on all
lanes. The idea here is to regulate the flow of traffic to minimize
the queue lengths while, at the same time, ensuring fairness so
that no lane suffers from being red for a long duration. Lanes
on the main road are given higher priority over other lanes. We
achieve the prioritization of main-road traffic as follows. Let
Ip denote the set of indexes of lanes whose traffic should be
given higher priority. Then, the single-stage cost k(sn, an) has
the form

k(sn, an) = r1 ∗

⎛
⎝∑

i∈Ip

r2 ∗ qi(n) +
∑
i/∈Ip

s2 ∗ qi(n)

⎞
⎠

+ s1 ∗

⎛
⎝∑

i∈Ip

r2 ∗ ti(n) +
∑
i/∈Ip

s2 ∗ ti(n)

⎞
⎠ (5)

where ri, si ≥ 0, and ri + si = 1, i = 1, 2. Furthermore, r2 >
s2. Thus, lanes in Ip are assigned a higher cost, and hence, a
cost-optimizing strategy must assign a higher priority to these
lanes to minimize the overall cost.

As aforementioned, we consider the infinite-horizon
discounted-cost framework. The discount factor γ plays a
crucial role, because a lower γ serves to discount the future
costs more, thereby putting less emphasis on these costs,
as opposed to a higher value of γ. We let γ = 0.9 in our
experiments.

For ease of exposition and to put things in perspective, we
first present in Section III a Q-learning algorithm based on full-
state representations that we develop for the case of prioritized
traffic. Next, in Section IV, we present for the first time in

the literature our Q-learning-based TLC algorithm, which in-
corporates function approximation and is shown to easily be
implementable on high-dimensional settings and to outperform
other well-known TLC algorithms.

III. Q-LEARNING WITH FULL-STATE REPRESENTATION

The idea in RL is that, to solve (4), we run a stochastic
iterative algorithm using observations obtained from online
samples. It is then shown, using the theory of stochastic ap-
proximation, that the algorithm asymptotically converges to
an optimal value function and policy tuple. An important RL
algorithm goes by the name Q-learning [18]. Here, we define
Q-values Q(i, a), i ∈ S, and a ∈ A(i) as follows:

Q(i, a) =

⎛
⎝k(i, a) + γ

∑
j∈S

p(i, j, a)V ∗(j)

⎞
⎠ . (6)

Based on (4), it is easy to see that

V ∗(i) = min
a∈A(i)

Q(i, a). (7)

Based on (7) and (6), we obtain the following form of the
Bellman equation of optimality, which is also oftentimes called
the Q-Bellman equation:

Q(i, a) =

⎛
⎝k(i, a) + γ

∑
j∈S

p(i, j, a) min
b∈A(j)

Q(j, b)

⎞
⎠ . (8)

Although, in (4), the minimization is immediately to the
right of the equality, in (8), the same gets pushed inside the
summation on the right. The reason for this approach is that
we are no longer looking at just state values but at values of
state–action tuples. We obtain, as a result, the following online
incremental update stochastic (Q-learning) algorithm:

Qn+1(i, a)=Qn(i, a)+a(n)

×
(
k(i, a)+γ min

b∈A(ηn(i,a))
Qn (ηn(i, a), b)−Qn(i, a)

)
. (9)

We can start this algorithm by arbitrarily initializing values
of all Q0(i, a), and a simple choice is to set them all to zero.
In the aforementioned, ηn(i, a), n ≥ 0, are independent and
identically distributed (i.i.d.) random variables that have the dis-
tribution p(i, ·, a), i.e., ηn(i, a) = j with probability p(i, j, a).
In addition, a(n), n ≥ 0 are (positive) step sizes that satisfy the
following conditions:∑

n

a(n) = ∞
∑

n

a(n)2 < ∞. (10)

The aforementioned first condition ensures that the algorithm
does not prematurely converge, whereas the second condition
ensures that the noise in the algorithm asymptotically vanishes.
Most often, as we do in our experiments, the step sizes are
simply chosen to be a(n) = 1/n, n ≥ 1. The convergence

416 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

of this algorithm has been analyzed in [18] and [25]. Upon
convergence, we obtain the optimal Q-value function and,
hence, the optimal policy as well.

This algorithm requires a full-state representation as it up-
dates over all feasible state–action tuples. It addresses the case
when the system model is not known; however, the state and
action spaces are manageable. Q-learning finds the optimal
policy, even without knowledge of the transition probabilities of
the underlying MDP. It does so by iteratively updating Q(s, a)
using (9) to obtain the optimal sign configuration policy.

We refer to the Q-learning algorithm with full state represen-
tation when applied to our setting as the QTLC-FS algorithm.

IV. Q-LEARNING WITH FUNCTION APPROXIMATION

The QTLC-FS algorithm runs an incremental stochastic al-
gorithm (9) to obtain the optimal sign configuration policy.
However, this approach requires a lookup table to store the
Q-values for every possible (s, a)-tuple. Although this con-
dition is useful in small state and action spaces, it becomes
computationally expensive for larger road networks that involve
multiple junctions. For instance, in the case of a small road
network (e.g., a two-junction corridor) with ten signaled lanes,
with each lane accommodating 20 vehicles, the number of
state–action tuples (and, hence, the size of the Q(s, a) lookup
table) is on the order of 1014. This condition leads to an ex-
traordinary computation time and space, because lookup table
representation requires much memory, and second, the lookup
and update operation of Q(s, a) for any (s, a) tuple is expensive
because of the number of (s, a)-tuples. For instance, in the case
of the aforementioned ten-lane example, (9) would correspond
to a system of 1014 equations needed to update Qn(i, a) for
each feasible (i, a)-tuple once. The situation is aggravated
when we consider larger road networks such as a grid or a
corridor with several junctions, because the sizes of the state
and action spaces exponentially blow up. It is precisely for this
reason that the Q-learning algorithm proposed in [1] is not even
implementable on medium- and large-sized road networks.
To alleviate this problem of the curse of dimensionality, we
incorporate feature-based methods. These methods handle the
aforementioned problem by making computational complexity
manageable. An introduction to feature-based methods is given
in the following section before we describe our Q-learning-
based TLC algorithm, which uses function approximation.

A. Feature-Based Representations

Note that the Bellman equation for optimality (4) requires
solving a system of equations in |S| variables. Similarly, a
solution to the Q-Bellman equation (8) requires solving a
system of equations in |S × A(S)| unknowns. Here, S × A(S)
denotes the set of all feasible state–action tuples. As previously
noted, the number of variables in these equations is of a large
order, even for road networks of small sizes. Thus, algorithms
that require full-state representations, e.g., QTLC-FS or the
algorithm in [1], are not even implementable on reasonably
sized road networks. This case is the prime reason for resorting
to function-based approximations.

In the setting of Q-learning with function-based approxima-
tion, the idea is to approximate the Q-value function Q(s,a) as

Q(s, a) ≈ θT σs,a (11)

where σs,a is a d-dimensional feature (column) vector that
corresponds to the state–action tuple (s, a), with s ∈ S, and
a ∈ A(s). The dimension d is significantly less compared to
the cardinality of the set of feasible state–action tuples (s, a).
Here, θ is a tunable parameter whose dimension is the same as
in σs,a.

Let Φ denote a matrix with rows σT
s,a, s ∈ S, a ∈ A(s). The

number of rows of this matrix is thus |S × A(S)|, whereas the
number of columns is d. Let

σs,a = (σs,a(1), . . . , σs,a(d))T .

Then, Φ = (Φ(i), i = 1, . . . , d), where Φ(i) is the column
vector and that is defined by

Φ(i) = (σs,a(i), s ∈ S, a ∈ A(s))T , i = 1, . . . , d.

Let θ = (θ1, . . . , θd)T . Then

Q ≈
d∑

i=1

Φ(i)θi, or alternatively, Q ≈ Φθ

where Q = [Q(s, a), s ∈ S, a ∈ A(s)]T is the vector of the
Q-values Q(s, a) over all feasible (s, a) tuples. In other words,
Q is approximated using Φθ. Note that the gradient of the
approximate Q-value function with regard to θ is

∇θQ(s, a) ≈ σs,a.

The Q-learning algorithm with function approximation that
we present in (12) is shown to perform a gradient search in Rd.

A routine requirement used to prove the convergence of
function-approximation-based algorithms is that the columns
Φ(i), i = 1, . . . , d of the feature matrix Φ are linearly indepen-
dent. We expect this requirement to hold good in our setting,
because the size of the state–action space is very large, and in
comparison, the dimension (d) of the feature vector is small.
For instance, in a 3 × 3 grid setting, whereas the size of the
state–action space is on the order of 10101, the size of d is only
about 200.

B. QTLC-FA

We now describe the Q-learning-based TLC algorithm with
function approximation (QTLC-FA). Although the QTLC-FS
algorithm as such requires complete state information and
is computationally less efficient, its function-approximation-
based variant parameterizes the value function and requires
significantly less computation in terms of space and time
requirements while giving good performance. The QTLC-FA
algorithm, which is a variant of the QTLC-FS algorithm, up-
dates the parameter θ, which is a d-dimensional quantity. Thus,
instead of solving a system in |S × A(S)| variables, we solve
here a system in only d variables. As aforementioned, in the
case of the 3 × 3 grid road network that we consider in our

L. A. AND BHATNAGAR: RL WITH FUNCTION APPROXIMATION FOR TRAFFIC SIGNAL CONTROL 417

experiments, it is shown that, although |S × A(S)| ∼ 10101,
d is only about 200. This results in significant speedup in the
computation time when feature-based representations are used.

Let sn, sn+1, denote the state at instants n and n + 1,
respectively. Let θn be the nth update of the parameter θ. The
QTLC-FA algorithm uses the following update rule:

θn+1 = θn + α(n)σsn,an

×
(

k(sn, an) + γ min
v∈A(sn+1)

θT
n σsn+1,v − θT

n σsn,an

)
(12)

where θ0 is arbitrarily set. In (12), the action an is chosen in
state sn according to an = arg minv∈A(sn) θT

n σsn,v .
Although the algorithm (12) updates the parameter θ ∈ Rd,

this approach results in updating the projected Q-value func-
tions, i.e., those that are obtained according to Q ≈ Φθ. Note
that the set {Φθ|θ ∈ Rd} forms a subspace of the set of all
functions on |S × A(S)| (i.e., the original Q-value functions).

The features are chosen based on the queue lengths and
elapsed times of each signaled lane of the road network. In
particular, we select features σsn,an

to have the following form:

σsn,an
=

(
σq1(n), . . . , σqN (n), σt1(n), . . . , σtN (n)

σa1(n), . . . , σam(n)

)T

where

σqi(n) =

⎧⎨
⎩

0, if qi(n) < L1
0.5, if L1 ≤ qi(n) ≤ L2
1, if qi(n) > L2

σti(n) =
{

0, if ti(n) ≤ T1
1, if ti(n) > T1.

(13)

Furthermore, σa1(n), . . . , σam(n) corresponds to the actions
or sign configurations chosen at each of the m junctions. As
before, N is the total number of lanes (inclusive of all junctions)
in the network. L1 and L2 are thresholds on the queue lengths,
and T1 is a threshold on the elapsed time. Note that the
parameter θn has the same dimension as in σsn,an

. Again,
the advantage here is that, instead of updating the Q-values
for each feasible (s, a)-tuple, as before, we estimate these
Q-values according to the parameterization (11). In the case of a
fixed policy, the algorithm (12) is analogous to the well-studied
temporal-difference learning algorithm. A proof of convergence
of the algorithm (12) under some conditions is provided in [21].

One advantage of using the aforementioned features is that
we do not require full information on the queue lengths or the
elapsed times. Thresholds L1 and L2 can be marked on the
lanes and used to estimate low (less than L1), medium (between
L1 and L2), or high (above L2) traffic. Likewise, the elapsed
time can be categorized as being below the threshold (T1) or
above it. More gradations of the queue lengths and elapsed
times can also be considered. Thus, another advantage of our
QTLC-FA algorithm over the algorithm in [1] or the QTLC-
FS algorithm is that it does not require precise queue length
information. Such information is often hard to obtain, whereas
a characterization of traffic at any time as low, medium, or high
is easier.

Practical implementation of QTLC-FA would require the
placement of sensors along the lanes of the road network.
Because we require only information on whether the traffic
congestion is below threshold L1, in between thresholds L1 and
L2, or above threshold L2, we can use two loops of sensors:
one loop placed along L1 and another loop along L2. If sensors
at L1 do not detect congestion, it can be inferred that the
congestion level on that lane is “low,” i.e., below L1. If, on the
other hand, sensors at L1 detect congestion but sensors at L2
do not, then congestion can be inferred to be in the “medium”
range (i.e., above L1 but below L2). Similarly, if sensors at L2
also detect congestion, then the congestion level can be inferred
to be in the “high” range (i.e., at the level of L2 or more).
Elapsed times are usually measured by time counters placed
at signal intersections. Again, we only need information on
whether the elapsed time on a lane is above or below a threshold
T1. Information on congestion levels and elapsed times below
or above a threshold will then have to be communicated to
the central controller, which would then run the QTLC-FA
algorithm to obtain the sign configuration policy. As observed
from our experiments, QTLC-FA has a very short transient
phase and is computationally very efficient (both in time and
space complexities) and, hence, can easily be implemented to
obtain the sign configurations online in a real system. Note
that, although we do not require precise information on vehicle
count, the problem of getting precise estimates of vehicle count
is an interesting problem in itself and has independently been
addressed, e.g., in [26].

There is another advantage of placing sensors along fixed
distances (e.g., L1 and L2) from the traffic junction and using
the distance of “detected” congestion (from the junction) as
a proxy for queue length thresholds. For instance, in the case
of the traffic situation prevalent in India, i.e., highly congested
traffic with a high diversity of vehicles, getting precise queue
length information is extremely difficult. Using passenger car
units (PCUs) as a measure of queue length [23] (e.g., three
motorbikes could correspond to one PCU), we can estimate
the number of PCUs (could be a fraction) that can be ac-
commodated in a unit distance (e.g., 1 m) of the lane. That
number multiplied by L1 or L2 would roughly correspond to
the number of PCUs that can be packed in L1 or L2 m of
the lane. Thus, L1 and L2 could be used as proxies for queue
thresholds, except for a multiplication factor. The form of our
cost objective (5) is such that the multiplication factor does not
play a role because the form of the “optimal” policy obtained
would still be the same.

V. SIMULATION EXPERIMENTS

We use the GLD simulator (see [22]) for the implementation
and evaluation of our TLC algorithms. GLD allows users
to build road networks (involving lanes, junctions, and road
users), simulate traffic from various road users, and obtain
performance statistics. The crucial part is that it allows the
implementation and evaluation of traffic light algorithms. It
consists of an interface for constructing the road layouts and
a traffic simulator for conducting the experiments with existing
and new TLC algorithms.

418 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

A. Implementation

We implement our QTLC-FA algorithm. For comparison, we
also implement the following algorithms.

• Fixed-timing TLC. This algorithm periodically cycles
through the list of feasible sign configurations while not
considering the traffic load on the lanes of the road net-
work. The cycling period in this algorithm is a tunable
parameter, and we show the results of its performance for
various cycling periods.

• SOTL [2]. This algorithm uses the elapsed times to decide
the sign configuration, i.e., the traffic light switches to
green when the elapsed time crosses a threshold, provided
that the number of vehicles crosses another threshold L.
We set L = 5 in our experiments, as has been done in [2].

• LTLC. Here, the number of road users waiting for a traffic
light to turn green is counted and used to decide on the
combination of traffic lights to be turned green in the next
time slot. In essence, LTLC attempts to switch the lane
with the highest number of waiting road users to green.

• QTLC-FS. This algorithm has been described in
Section III.

• Q-learning with no priority (QTLC-NP) [1]. This algo-
rithm has a similar update rule as QTLC-FS; however, the
cost function here is

k(sn, an) =
N∑

i=1

qi(n) +
N∑

i=1

ti(n). (14)

Thus, in particular, unlike QTLC-FS, this algorithm
does not assign a higher priority to main-road traffic.

We consider the following four different network scenarios:

1) a two-junction corridor;
2) a 2 × 2 grid network
3) a 3 × 3 grid network;
4) an eight-junction corridor.

The road networks are shown in Fig. 1, which are snapshots
obtained from the GLD software. Although we consider all
roads to be of two lanes in the two-junction corridor, we
consider all roads to be of four lanes in all the other settings.
This has been done because we could implement the QTLC-
FS and QTLC-NP algorithms only on the two-junction corridor
setting when all roads had two lanes. When the number of
lanes is increased, both algorithms could not be implemented
because of the aforementioned curse of dimensionality effect.
On the other hand, our algorithm with function approximation,
i.e., QTLC-FA, was found to easily be implementable on all the
settings that we considered. The simulations were conducted
for 5000 cycles for all algorithms. Each road user’s destination
was randomly fixed using a discrete uniform distribution to
choose one of the edge nodes.

In all the road networks, we set the spawn frequencies (the
average rate at which traffic is generated randomly in GLD) so
that the proportion of cars flowing on the main road to those
on the side roads is in the ratio of 100:5. This setting is close
to real-life traffic scenarios on many busy corridor and grid
networks and has also been used, e.g., in [2].

Fig. 1. Road networks used for our experiments. (a) Two-junction corridor,
(b) 2 × 2 grid network, (c) 3 × 3 grid network, and (d) eight-junction corridor.

L. A. AND BHATNAGAR: RL WITH FUNCTION APPROXIMATION FOR TRAFFIC SIGNAL CONTROL 419

Fig. 2. Performance comparison of the TLC algorithms for the two-junction
corridor case. (a) AJWT. (b) TAR.

For both QTLC-FS and QTLC-FA, we set the weights in the
single-stage cost function k(s, a) in (5) as r1 = s1 = 0.5. We
thus give equal weight to both the queue length and elapsed
time components. Furthermore, we set r2 = 0.6 and s2 = 0.4.
This assignment gives a higher priority to the lanes on the main
road than on the side roads. The thresholds L1 and L2 were
set to 6 and 14, respectively, considering that the length of the
roads in all the road networks that we study is 20. The threshold
T1 was set to 90.

B. Results

We compare the performance of the TLC algorithms using
the average junction waiting times (AJWT) and total arrived
road users (TAR), i.e., the number of road users who have
reached their destination. The performance plots of AJWT and
TAR versus the number of cycles in all four road networks
studied are shown in Figs. 2–5.

Based on the aforementioned plots, we observe that QTLC-
FA consistently shows the best results in all the four road net-
works studied. We now discuss the performance results in more
detail. Based on the AJWT and TAR plots, we observe that
QTLC-FA performs better than the fixed-timing TLC algorithm
for all the cycling periods considered in the latter case. Using

Fig. 3. Performance comparison of the TLC algorithms for the 2 × 2 grid
network case. (a) AJWT. (b) TAR.

a broad estimate of queue lengths and elapsed times of the
signaled lanes enables the QTLC-FA algorithm to adapt the
sign configuration policy to the traffic situation, whereas fixed-
timing algorithms are unmindful of the current traffic situation,
leading to longer waiting times.

We do not show the plots of the LTLC algorithm, be-
cause it performed very poorly compared to our algorithms.
In fact, when LTLC was used, the traffic invariably entered
a deadlock situation, because the algorithm always arrived at
a sign configuration that did not allow traffic to pass across
junctions. The longest queue status of the lanes then remained
the same because of the gridlock, leaving the sign configuration
unchanged.

QTLC-FA also outperformed the SOTL algorithm [2] in
all the four road networks. Using a broad estimate of con-
gestion on the signaled lanes apart from the elapsed times,
the QTLC-FA algorithm found an approximately optimal sign
configuration policy that minimized the long-term discounted
cost, which, in essence, ensured smooth traffic flow. Although
both SOTL and QTLC-FA used a rough measure of the level
of congestion based on certain thresholds, QTLC-FA outper-
formed SOTL, because it adaptively tunes the feedback policy,
unlike SOTL.

420 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 2, JUNE 2011

Fig. 4. Performance comparison of the TLC algorithms for the 3 × 3 grid
network case. (a) AJWT. (b) TAR.

As previously explained, we implemented the QTLC-FS and
QTLC-NP [1] algorithms only on the two-junction corridor,
with each road having two lanes, and not on the other networks
because of the exponential increase in computational complex-
ity in the case of networks with more lanes and junctions. On
the other hand, QTLC-FA is easily implementable on larger
network scenarios and requires much less computation. Based
on the performance plots in Fig. 2, we observe that QTLC-FA
did better than both QTLC-FS and QTLC-NP, apart from the
other TLC algorithms with which it was compared. A judicious
choice of features that take into account both the congestion
levels on the lanes of the road network and the elapsed times
to ensure that no lane waits for a long duration for its signal to
turn green resulted in an improved performance for QTLC-FA,
compared with both QTLC-FS and QTLC-NP.

Based on the AJWT plots, we observe that the transient
phase, i.e., the initial period when QTLC-FA tunes its param-
eters before stabilizing on a policy, is only a few cycles, and
hence, QTLC-FA rapidly converges to a near-optimal sign
configuration policy. In addition, QTLC-FA has the advantages
of any RL algorithm, i.e., it adapts well to traffic conditions
on different types of road networks. This case is evident in
the superior performance of QTLC-FA on all road networks

Fig. 5. Performance comparison of the TLC algorithms for the eight-junction
corridor case. (a) AJWT. (b) TAR.

considered, with no specific tuning of the QTLC-FA algorithm
done for a particular road network.

VI. CONCLUSION

Designing a road traffic management system based on wire-
less sensor networks that achieves high traffic flow rates with
minimum congestion is a challenging task. RL presents an
interesting paradigm for solving such problems. We have de-
signed and evaluated two Q-learning-based algorithms for road
traffic control on a network of junctions. Q-learning TLCs have
the advantages of model-free learning algorithms that adapt in
real time to the traffic conditions. Our Q-learning algorithm
with function approximation is proposed for the first time in the
literature for traffic signal control. Based on the performance
simulations, it is observed that our QTLC-FA algorithm con-
sistently outperforms all the other algorithms with which we
showed performance comparisons over all the network settings
considered.

Our future work would involve the application of other
efficient RL algorithms with function approximation (see [27]
and [28]) to the problem of traffic signal control. Furthermore,
we shall also consider feature adaptation schemes that would

L. A. AND BHATNAGAR: RL WITH FUNCTION APPROXIMATION FOR TRAFFIC SIGNAL CONTROL 421

update the features to obtain the “best possible” features. More-
over, we shall develop RL algorithms for constrained MDPs
and adapt them to the setting of traffic signal control. Finally,
it would be interesting to incorporate the effects of driver
behavior in our framework (see [29]).

ACKNOWLEDGMENT

The authors would like to thank the reviewers of this paper
for their comments, which helped in significantly enhancing
the scope and overall quality of this paper, Prof. A. Kumar
and Prof. K. V. S. Hari for their helpful discussions, and
Mr. Ravikumar for his useful inputs and for sharing his work.

REFERENCES

[1] B. Abdulhai, R. Pringle, and G. Karakoulas, “Reinforcement learning
for true adaptive traffic signal control,” J. Transp. Eng., vol. 129, no. 3,
pp. 278–285, May/Jun. 2003.

[2] S. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic lights:
A realistic simulation,” in Advances in Applied Self-Organizing Systems.
New York: Springer-Verlag, 2008, pp. 41–50.

[3] J. Spall and D. Chin, “Traffic-responsive signal timing for systemwide
traffic control,” Transp. Res. Part C: Emerging Technol., vol. 5, no. 3/4,
pp. 153–163, Aug. 1997.

[4] R. Smith and D. Chin, “Evaluation of an adaptive traffic control technique
with underlying system changes,” in Proc. Winter Simul. Conf., 1995,
pp. 1124–1130.

[5] D. Chin, J. Spall, and R. Smith, “Evaluation of systemwide traffic signal
control using stochastic optimization and neural networks,” in Proc. Amer.
Control Conf., 1999, vol. 3, pp. 2188–2194.

[6] D. Srinivasan, M. Choy, and R. Cheu, “Neural networks for real-time
traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 3,
pp. 261–272, Sep. 2006.

[7] W. Lin and C. Wang, “An enhanced 0–1 mixed-integer LP formulation
for traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4,
pp. 238–245, Dec. 2004.

[8] B. Gokulan and D. Srinivasan, “Distributed geometric fuzzy multiagent
urban traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 11,
no. 3, pp. 714–727, Sep. 2010.

[9] M. Girianna and R. Benekohal, “Using genetic algorithms to design signal
coordination for oversaturated networks,” J. Intell. Transp. Syst., vol. 8,
no. 2, pp. 117–129, Apr. 2004.

[10] J. Sanchez-Medina, M. Galan-Moreno, and E. Rubiyo-Royo, “Traffic sig-
nal optimization in “La Almozara” district in Saragossa under congestion
conditions, using genetic algorithms, traffic microsimulation, and cluster
computing,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 132–141,
Mar. 2010.

[11] X. Yu and W. Recker, “Stochastic adaptive control model for traffic signal
systems,” Transp. Res. Part C: Emerging Technol., vol. 14, no. 4, pp. 263–
282, Aug. 2006.

[12] D. Robertson, TRANSYT: A Traffic Network Study Tool. Crowthorne,
U.K.: Road Res. Lab., 1969.

[13] D. Robertson and R. Bretherton, “Optimizing networks of traffic signals in
real time-the SCOOT method,” IEEE Trans. Veh. Technol., vol. 40, pt. 2,
no. 1, pp. 11–15, Feb. 1991.

[14] D. de Oliveira, A. Bazzan, B. da Silva, E. Basso, L. Nunes, R. Rossetti,
E. de Oliveira, R. da Silva, and L. Lamb, “Reinforcement learning based
control of traffic lights in nonstationary environments: A case study in a
microscopic simulator,” in Proc. 4th EUMAS, 2006, pp. 31–42.

[15] T. Li, D. Zhao, and J. Yi, “Adaptive dynamic programming for multi-
intersections traffic signal intelligent control,” in Proc. 11th Int. IEEE
ITSC, 2008, pp. 286–291.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Cambridge, MA: MIT
Press, Mar. 1998.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Neurodynamic Programming (Op-
timization and Neural Computation Series 3). Belmont, MA: Athena
Scientific, May 1996.

[18] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3,
pp. 279–292, May 1992. [Online]. Available: http://dx.doi.org/10.1007/
BF00992698

[19] G. Abu-Lebdeh and R. Benekohal, “Design and evaluation of dynamic
traffic management strategies for congested conditions,” Transp. Res. Part
A: Policy Pract., vol. 37, no. 2, pp. 109–127, Feb. 2003.

[20] I. Yun and B. Park, “Application of stochastic optimization method for an
urban corridor,” in Proc. 38th Winter Simul. Conf., 2006, pp. 1493–1499.

[21] F. Melo and M. Ribeiro, “Q-learning with linear function approximation,”
in Proc. Learn. Theory, 2007, pp. 308–322.

[22] M. Wiering, J. Vreeken, J. van Veenen, and A. Koopman, “Simulation
and optimization of traffic in a city,” in Proc. IEEE Intell. Veh. Symp.,
Jun. 2004, pp. 453–458.

[23] P. Ravikumar, Area traffic control system for heterogeneous traffic having
limited lane discipline,” Department of Civil Engineering, Indian Institute
of Technology Bombay, Mumbai, India, Tech. Rep., 2009.

[24] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York: Wiley, 1994.

[25] J. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”
Mach. Learn., vol. 16, no. 3, pp. 185–202, Sep. 1994.

[26] K. Kwong, R. Kavler, R. Rajagopal, and P. Varaiya, “Real-time measure-
ment of link vehicle count and travel time in a road network,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 4, pp. 814–825, Dec. 2010.

[27] V. Konda and J. Tsitsiklis, “On actor-critic algorithms,” SIAM J. Control
Optim., vol. 42, no. 4, pp. 1143–1166, 2004.

[28] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-
critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, Nov. 2009.

[29] J. Pauwelussen and P. Feenstra, “Driver behavior analysis during ACC
activation and deactivation in a real traffic environment,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 2, pp. 329–338, Jun. 2010.

Prashanth L. A. was born in Gauribidanur, India.
He received the B.E. degree in computer science
from the National Institute of Technology, Surathkal,
India, in 2002 and the M.Sc. (Engg.) degree in com-
puter science from the Indian Institute of Science,
Bangalore, India, in 2008. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Automation, Indian Institute of Science,
Bangalore.

He was with Texas Instruments, Bangalore, India,
for more than six years as a Senior Software Systems

Engineer. His research interests include stochastic control and optimization,
reinforcement learning and its application to road traffic control, and wireless
networks.

Shalabh Bhatnagar (SM’05) received the B.S.
(Hons.) degree in physics from the University of
Delhi, Delhi, India, in 1988 and the M.S. and Ph.D.
degrees in electrical engineering from the Indian
Institute of Science, Bangalore, India, in 1992 and
1997, respectively.

From 1997 to 2000, he was a Research Associate
with the Institute for Systems Research, University
of Maryland, College Park. From 2000 to 2001,
he was a Divisional Postdoctoral Fellow with the
Free University, Amsterdam, The Netherlands. He is

currently with the Department of Computer Science and Automation, Indian
Institute of Science, Bangalore, as an Associate Professor. He has also held
visiting positions with the Indian Institute of Technology, Delhi, and the
University of Alberta, Edmonton, AB, Canada. He is the author or a coauthor of
more than 90 research papers in various journals and conference proceedings.
His research interests include reinforcement learning, stochastic control, and
simulation optimization, in particular applications in communications, wireless
networks, and, more recently, vehicular traffic control.

Dr. Bhatnagar is a Senior Associate of the Abdus Salam International Center
for Theoretical Physics, Trieste, Italy, and a Professional Member of the
Association for Computing Machinery. He has received the Young Scientist
Award from the Systems Society of India in 2007 and two Outstanding Young
Faculty awards from Microsoft Research India in 2007 and 2008. He is an
Associate Editor for the IEEE TRANSACTIONS ON AUTOMATION SCIENCE

AND ENGINEERING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

