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Abstract. Service systems are labor intensive. Further, the workload tends to
vary greatly with time. Adapting the staffing levels to the workloads in such sys-
tems is nontrivial due to a large number of parameters and operational variations,
but crucial for business objectives such as minimal labor inventory. One of the
central challenges is to optimize the staffing while maintaining system steady-
state and compliance to aggregate SLA constraints. We formulate this problem
as a parametrized constrained Markov process and propose a novel stochastic op-
timization algorithm for solving it. Our algorithm is a multi-timescale stochastic
approximation scheme that incorporates a SPSA based algorithm for ‘primal de-
scent’ and couples it with a ‘dual ascent’ scheme for the Lagrange multipliers.
We validate this optimization scheme on five real-life service systems and com-
pare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of
magnitude faster than OptQuest, our scheme is particularly suitable for adaptive
labor staffing. Also, we observe that it guarantees convergence and finds better
solutions than OptQuest in many cases.

Keywords: Service systems, labor optimization, constrained stochastic
optimization.

1 Introduction

In service-based economies, the clients and service providers exchange value through
service interactions and reach service outcomes. Service requests of a client can vary
greatly in the skills required to fulfill the request, expected turn-around time, and the
context of the client’s business needs. As a result, service delivery is a labor-intensive
business and it is crucial to optimize labor costs. A Service System (SS) is an organiza-
tion composed of (i) the resources that support, and (ii) the processes that drive service
interactions so that the outcomes meet customer expectations [1]. The contributions of
this paper are focused on data-center management services but can be extended to all
service domains. The service providers manage the data-centers from remote locations
called delivery centers where groups of service workers (SW) skilled in specific tech-
nology areas support corresponding service requests (SR). In each group, the processes,
the people and the customers that drive the operation of center constitute a SS. A deliv-
ery center is a system of multiple SS. A central component in these operational models
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is the policy for assigning SRs to SWs, called the dispatching policy. The fundamen-
tal challenges here are: (i) given an SS with its operational characteristics, the staffing
across skill levels and shifts needs to be optimized while maintaining steady-state and
compliance to Service Level Agreement (SLA) constraints. (ii) the SS characteristics
such as work patterns, technologies and customers supported change frequently, and
hence the optimization needs to be adaptive.

This paper presents a novel stochastic optimization algorithm SASOC (Staff Alloca-
tion using Stochastic Optimization with Constraints) to address the above challenges.
SASOC is a three timescale stochastic approximation scheme that uses SPSA-based
[2] estimates for performing gradient descent in the primal, while having a dual ascent
scheme for the Lagrange multipliers. In the evaluation step of SASOC, we leverage
the simulation-based operational models developed in [3] for two of the dispatching
policies, namely, PRIO-PULL (basic priority scheme) and EDF (earliest deadline first).
We evaluate our algorithm on data from five real-life SS in the data-center manage-
ment domain. In comparison with the state-of-the-art OptQuest optimization toolkit
[4], we find that (a) SASOC is two orders of magnitude faster than OptQuest, (b) it
finds solutions of comparable quality to OptQuest, and (c) it guarantees convergence
where OptQuest does not find feasibility even with 5000 iterations. Precisely due to
the guaranteed convergence and by returning good solutions quickly, SASOC is well
suited to better address the above two challenges, especially with respect to adaptivity.
By comparing SASOC results on two independent operational models corresponding
to PRIO-PULL and EDF dispatching policies, we show that SASOC’s performance is
independent of the operational model of SS.

We now review relevant literature in service systems and stochastic optimization. In
[5], a two step mixed-integer program is formulated for the problem of dispatching SRs
within service systems. While their goal is similar, their formulation does not model the
stochastic variations of arrivals or processing times. Further, unlike our framework, the
SLA constraints in their formulation cannot be aggregates. In [6], the authors propose
a scheme for shift-scheduling in the context of third-level IT support systems. Unlike
this paper, they do not validate their method against data from real-life third-level IT
support. In [3], a simulation framework for evaluating dispatching policies is proposed.
A scatter search technique is used to search over the space of SS configurations and
optimize the staff there. While we share their simulation model, the goal in this paper is
to propose a fundamentally new algorithm that is based on stochastic optimization. In
general, none of the above papers propose an optimization algorithm that is geared for
SS and that leverages simulation to adapt optimization search parameters.

A popular and highly efficient simulation based local optimization scheme for gra-
dient estimation is Simultaneous Perturbation Stochastic Approximation (SPSA) pro-
posed by [7]. SPSA is based on the idea of randomly perturbing the parameter vector
using i.i.d., symmetric, zero-mean random variables that has the critical advantage that
it needs only two samples of the objective function for any N -dimensional parameter.
Usage of deterministic perturbations instead of randomized was proposed in [2]. The de-
terministic perturbations there were based either on lexicographic or Hadamard matrix
based sequences and were found to perform better than their randomized perturbation
counterparts. In [8], several simulation based algorithms for constrained optimization
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have been proposed. Two of the algorithms proposed there use SPSA for estimating the
gradient, after applying Lagrangian relaxation procedure to the constrained optimiza-
tion problem.

2 Problem Formulation

We consider the problem of finding the optimal number of workers for each shift and
of each skill level in a SS, while adhering to a set of SLA constraints. We formulate
this as a constrained optimization problem with the objective of minimizing the labor
cost in the long run average sense, with the constraints being on SLA attainments. The
underlying dispatching policy (that maps the service requests to the workers) is fixed
and is in fact, parametrized by the set of workers. In essence, the problem is to find the
‘best’ parameter (set of workers) for a given dispatching policy.

In a typical SS, the arrival as well as service time of SRs are probabilistic. Thus, the
system can be modeled to be evolving probabilistically over states, where each state
transition incurs a cost. The objective is to minimize the long run average sum of this
single stage cost, while adhering to a set of SLA constraints. The state is the vector of
the utilization of workers for each shift and skill level, and the current SLA attainments
for each customer and each SR priority. Any arriving SR has a customer identifier and
a priority identifier. Let A be the set of shifts of the workers, B be the set of skill levels
of the workers, C be the set of all customers and P be the set of all possible priorities
in the SS under consideration. The state Xn at time n is given by

Xn = (u1,1(n), ........, u|A|,|B|(n), γ′
1,1(n), ........, γ′

|C|,|P |(n), q(n)),

where 0 ≤ ui,j ≤ 1 is the per-unit utilization of the workers in shift i and skill level
j. 0 ≤ γ′

i,j ≤ 1 denotes the SLA attainment level for customer i and priority j. q is
a Boolean variable that denotes the queue feasibility status of the system at instant n.
In other words, q is false if the growth rate of the SR queues (for each complexity) is
beyond a threshold and true otherwise. We need q to ensure system steady-state which
is independent of SLA attainments because SLA attainments are computed only on the
SRs that were completed and not on SRs queued up in the system. The action an at
instant n specifies the number of workers of each skill level in each shift.

The single stage cost function is designed so as to minimize the under-utilization of
workers as well as over-achievement/under-achievement ofSLAs. Here, under-utilization
of workers is the complement of utilization and in essence, this is equivalent to maxi-
mizing the worker utilizations. The over-achievement/under-achievementof SLAs is the
distance between attained SLAs and the contractual SLAs. Hence, the cost function is
designed to balance between two conflicting objectives and has the form:

c(Xn) = r ×
⎛
⎝1 −

|A|∑
i=1

|B|∑
j=1

αi,j × ui,j(n)

⎞
⎠ + s ×

⎛
⎝

|C|∑
i=1

|P |∑
j=1

∣∣γ′
i,j(n) − γi,j

∣∣
⎞
⎠ , (1)

where r, s ≥ 0 and r + s = 1. 0 ≤ γi,j ≤ 1 denotes the contractual SLA for customer i
and priority j. Note that the first factor uses a weighted sum of utilizations over workers
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from each shift and across each skill level. The weights αi,j are derived from the work-
load distribution across shifts and skill levels over a month long period. These weights
satisfy 0 ≤ αi,j ≤ 1,

∑|A|
i=1

∑|B|
j=1 αi,j = 1. This prioritization of workers helps in

optimizing the worker set based on the workload.
The constraints are on the SLA attainments and are given by:

gi,j(Xn) = γi,j − γ′
i,j(n) ≤ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P |, (2)

h(Xn) = 1 − q(n) ≤ 0, (3)

where constraints (2) specify that the attained SLA levels should be equal to or above
the contractual SLA levels for each pair of customer and priority. The constraint (3)
ensures that the SR queues for each complexity in the system stay bounded.

Considering that the state is a vector of utilization levels and the current SLA attain-
ments, it is easy to see that {Xn, n ≥ 1} is a constrained Markov process for any given
dispatch policy. Further, {Xn, n ≥ 1} is parametrized with

θ = (W1,1, ........, W|A|,|B|)T ∈ R|A|×|B|,

where Wi,j indicates the number of service workers whose skill level is j and whose
shift index is i. We want to find an optimal value for the parameter vector θ that min-
imizes the long-run average sum of single-stage cost c(Xn) while maintaining queue
stability h(Xn) and compliance to contractual SLAs gi,j(Xn), ∀i = 1, . . . , |C|, j =
1, . . . , |P |.

We let the parameter vector θ ∈ R|A|×|B| take values in a com-

pact set M
�
= [0, Wmax]|A|×|B| through the projection operator Π defined

by Π(θ)
�
= (π(W1,1), . . . , π(W|A|,|B|))T , θ ∈ R|A|×|B|. Here π(x)

�
=

min(max(0, x), Wmax). In essence, the projection operator Π keeps each Wi,j

bounded between 0 and Wmax and this is necessary for ensuring the convergence of θ.
Our aim is to find a θ that minimizes the long run average cost,

J(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[c(Xm)]

subject to

Gi,j(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[gi,j(Xm)] ≤ 0 ∀i = 1, . . . , |C|, j = 1, . . . , |P |,

H(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[h(Xm)] ≤ 0

(4)

Here each step from n to n+1 indicates a state transition from Xn to Xn+1, incurring a
cost c(Xn). The parameter θ decides what cost is incurred and whether the constraints
are met. The actions aj are assumed to be governed by the underlying dispatching policy
of the SS. We make a standard assumption that the Markov process {Xn, n ≥ 1} is
ergodic for the given dispatching policy, which is true in general. Thus, the limits in the
above optimization problem are well defined. While it is desirable to find the optimum
θ∗ ∈ M i.e.,

θ∗ = argmin {J(θ) s.t. θ ∈ M, Gi,j(θ) ≤ 0, i = 1, . . . , |C|, j = 1, . . . , |P |, H(θ) ≤ 0} ,
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it is in general very difficult to achieve a global minimum. We apply the Lagrangian
relaxation procedure to the above problem and then use a local optimization scheme
based on SPSA for finding the optimum parameter θ∗.

3 Our Algorithm (SASOC)

The constrained optimization problem (4) can be expressed using the standard Lagrange
multiplier theory as an unconstrained optimization problem given below.

max
λ

min
θ

L(θ, λ)
�
= lim

n→∞
1
n

n−1∑
m=0

E

⎧⎨
⎩c(Xm) +

|C|∑
i=1

|P |∑
j=1

λi,jgi,j(Xm) + λfh(Xm)

⎫⎬
⎭
(5)

where λi,j ≥ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P | represent the Lagrange multipliers
corresponding to constraints gi,j(·) and λf represents the Lagrange multiplier for the
constraint h(·), in the optimization problem (4). The function L(θ, λ) is commonly re-
ferred to as the Lagrangian. An optimal (θ∗, λ∗) is a saddle point in the Lagrangian i.e.
L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ). Thus, it is necessary to design an algorithm which
descends in θ and ascends in λ to find the optimum point. The simplest iterative proce-
dure for this purpose would use the gradient of the Lagrangian with respect to θ and λ
to descend and ascend respectively. However, for the given system the computation of
gradient with respect to θ would be intractable due to lack of a closed form expression
of the Lagrangian. Thus, a simulation based algorithm is required. We employ an SPSA
technique [7,2] for obtaining a stochastic approximation descent procedure for θ. For
λi,j and λf , values of gi,j(·) and h(·) respectively can be seen to provide a stochastic
ascent direction.

The above explanation suggests that an algorithm would need three stages in each
of its iterations. (i) The inner-most stage which performs one or more simulations over
several time steps; (ii) The next outer stage which computes a gradient estimate using
simulation results of the inner most stage and then updates θ along descent direction.
This stage would perform several iterations for a given λ and find out the best θ; and
(iii) The outer-most stage which computes the long-run average value of each constraint
using the iterations in the inner two stages and updates the Lagrange multipliers λ for
using that as the ascent direction. The above three steps need to be performed itera-
tively till the solution converges to a saddle point described previously. However, this
approach suffers from a serious drawback of requiring to perform several simulations
as a whole as one outer stage update happens for one full run of inner stages at both
levels. This issue gets addressed by using simultaneous updates to all three stages but
with different time-steps, the outer-most having the smallest while the inner-most hav-
ing the largest time-steps. This comes under the realm of multiple time-scale stochastic
approximation [9, Chapter 6]. We develop a three time-scale stochastic approximation
algorithm that does primal descent using an SPSA based actor-critic algorithm while
performing dual ascent on the Lagrange multipliers. The update rule for SASOC is
given below:
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Wi,j(n + 1) = Π
(
Wi,j(n) + b(n)

(
L̄(nK)−L̄′(nK)

δ�i,j(n)

))
,

∀i = 1, 2, . . . , |A|, j = 1, 2, . . . , |B|,
where for m = 0, 1, . . . , K − 1,

L̄(nK + m + 1) = L̄(nK + m)+

d(n)(c(XnK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(XnK+m) + λfh(XnK+m) − L̄(nK + m)),

L̄′(nK + m + 1) = L̄′(nK + m)+

d(n)(c(X̂nK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(X̂nK+m) + λfh(X̂nK+m) − L̄′(nK + m)),

λi,j(n + 1) = (λi,j(n) + a(n)gi,j(Xn))+ , ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |,

λf (n + 1) = (λf (n) + a(n)h(Xn))+ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
where

– X̂m represents the state at iteration m from the simulation run with perturbed pa-
rameter θ[ n

K ] + δΔ[ n
K ]. Here [ n

K ] denotes the integer portion of n
K . For simplicity,

hereafter we use θ + δΔ to denote θ[ n
K ] + δΔ[ n

K ];
– δ > 0 is a fixed perturbation control parameter while Δ represents a determin-

istic perturbation sequence chosen according to an associated Hadamard matrix,
explained later in this section;

– The operator Π(·) ensures that the updated value for θ stays within the chosen
compact space T ;

– L̄ and L̄′ represent Lagrangian estimates for θ and θ + δΔ respectively. Thus, for
each iteration two simulations are carried out, one with θ parameter and the other
with the perturbed parameter θ + δΔ, the result of which is used to update L̄ and
L̄′; and

– K ≥ 1 is a fixed parameter which controls the rate of update of θ in relation to that
of L̄ and L̄′. This parameter allows for accumulation of updates to L̄ and L̄′ for K
iterations in between two successive θ updates.

The step-sizes {a(n)}, {b(n)} and {d(n)} satisfy
∑

n a(n) =
∑

n b(n) =
∑

n d(n) = ∞;
∑

n(a2(n) + b2(n) + d2(n)) < ∞,
b(n)
d(n)

,
a(n)
b(n)

→ 0 as n → ∞..

The above choice of step-size ensure separation of time-scales between the recursions
of Wi,j , L̄, L̄′ and λ. The perturbation sequence {�(n)} is constructed using Hadamard
matrices and the reader is referred to Lemma 3.3 of [2] for details of the construction.

4 Simulation Experiments

We use the simulation framework developed in [3] and focus on the PRIO-PULL and
EDF dispatching policies. However, SASOC algorithm is agnostic to the dispatching
policies. In PRIO-PULL policy, SRs are queued in the complexity queues based directly
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on the priority assigned to them by the customers. On the other hand, in the EDF policy
the time left to SLA target deadline is used to assign the SRs to the SWs i.e., the SW
works on the SR that has the earliest deadline. We implemented our SASOC algorithm
as well as an algorithm for staff allocation using the state-of-the-art optimization tool-
kit OptQuest. OptQuest is a well-established tool for solving simulation optimization
problems [4].

For the SASOC algorithm, we set the weights in the single-stage cost function c(Xm),
see (1), as r = s = 0.5. We thus give equal weightage to both the worker utiliza-
tion and the SLA over-achievement components. The feasibility Boolean variable q
used in the constraint (3) was set to false (i.e., infeasible) if the queues were found
to grow by 1000% over a two-week period. On each SS, we compare our SASOC al-
gorithm with the OptQuest algorithm using Wsum as the performance metric. Here

Wsum
�
=

∑|A|
i=1

∑|B|
j=1 Wi,j is the sum of workers across shifts and skill levels. We ob-

serve that simulation run-times are proportional to the number of SS simulations and
hence, an order of magnitude higher for OptQuest as compared to SASOC.

(a) W ∗
sum achieved for PRIO-PULL (b) W ∗

sum achieved for EDF

Fig. 1. Performance of OptQuest and SASOC for two different dispatching policies on five real
SS (Note: OptQuest is infeasible over SS4)

Figs 1(a) and 1(b) compare the W ∗
sum achieved for OptQuest and SASOC algorithms

using PRIO-PULL on five real life SS. Here W ∗
sum denotes the value obtained upon

convergence of Wsum. On three SS pools, namely SS3, SS4 and SS5, respectively, we
observe that our SASOC algorithm finds a significantly better value of W ∗

sum as com-
pared to OptQuest. Note in particular that the performance difference between SASOC,
and OptQuest on SS3 and SS5 is nearly 100%. Further, on SS4, OptQuest is seen to be
infeasible whereas SASOC obtains a feasible good allocation. On the other two pools,
SS1 and SS2, OptQuest is seen to be slightly better than SASOC. Further, the SASOC
algorithm requires 500 iterations, with each iteration having 20 replications of the SS
- 10 each with unperturbed parameter θ and perturbed parameter θ + δΔ respectively,
whereas OptQuest requires 5000 iterations with each iteration of 100 replications. This
implies a two orders of magnitude improvement while searching for the optimal SS
configuration in SASOC as compared to OptQuest. Fig 1(b) presents similar results for



494 L.A. Prashanth et al.

the case of EDF dispatching policy. The behavior of OptQuest and SASOC algorithms
was found to be similar to that of PRIO-PULL and SASOC shows significant perfor-
mance improvements over OptQuest here as well. We observe that SASOC is a robust
algorithm that gives a reliably good performance, is computationally efficient and is
provably convergent, unlike OptQuest that does not possess these features.

5 Conclusions

We presented an efficient algorithm SASOC for optimizing staff allocation in the con-
text of SS. We formulated the problem as a constrained optimization problem where
both the objective and constraint functions were long run averages of a state depen-
dent single-stage cost function. A novel single stage cost that balanced the conflict-
ing objectives of maximizing worker utilizations and minimizing the over-achievement
of SLA was employed. Numerical experiments were performed to evaluate SASOC
against prior work in the context of a real-life service system. SASOC showed much
superior performance compared to the state-of-the-art simulation optimization toolkit
OptQuest, as it (a) was an order of magnitude faster than OptQuest, (b) found solutions
of quality comparable to those found by OptQuest even in scenarios where OptQuest
did not find feasibility even after 5000 iterations. By comparing SASOC results on two
independent operational models, we showed that SASOCs performance is independent
of the operational model of SS. We are in the process of developing and applying a
second-order Newton based scheme with SPSA estimates for this problem. It would be
of interest to compare the performance of that scheme with the one proposed here. It
would also be of interest to prove the theoretical convergence of these algorithms.
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