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apply our algorithm to a problem of prediction in traffic sgyrcontrol and observe

good performance over two different network settings.

Key Words. Online feature adaptation, temporal difference learniragfic sig-

nal control.

23.1 INTRODUCTION

Markov decision process (MDP) [3, 4, 22] is a general frantéfar solving stochas-
tic control problems. Classical solution approaches forRM&uch as policy and
value iteration solve the associated control problem pedgiby identifying an opti-
mal action to pick in each state. These approaches typisaffer from two major
problems: (a) they require precise knowledge of the tremmsirobabilities i.e., the
system model, and (b) the amount of computation requiredtaima solution using
these approaches grows exponentially with the size of #te aind/or action space.
Reinforcement learning (RL) [7], [5], [25] provides effiaiesolutions for both prob-
lems above. Many RL algorithms are incremental update sihapproximation
algorithms that work directly with real or simulated dat&eEe algorithms make use
of the averaging property of stochastic approximation a&salt of which they work
efficiently even when the system transition model is not kmokor problems where
the cardinality of the state/action space is so large thetipe solutions cannot be
obtained easily, one resorts to certain approximation atthOften the value func-
tion is approximated as a function of certain parametef{&e functional form of

the approximator is also called an architecture. Architexs based on linear func-
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tion approximators have been well studied in the literahgeause algorithms such
as temporal difference (TD) learning [24] have been showvement when linear
architectures are used [26], [27]. Here the value of a gitateds approximated
using the scalar product of the parameter vector with theifeassociated with the
state. The feature usually quantifies important statebatgs. On the other hand,
TD with nonlinear function approximators has been seenverge in some cases.
An important problem that we address in this paper is to aeaigefficient scheme
to adaptively select the ‘best features’ when linear fuorcpproximation is used.
The problem of feature adaptation has been studied redentbyroblems of pre-
diction as well as control. In [18], features are assumedrpaterized and the prob-
lem considered is one of finding the optimum feature paranveten TD learning
is used. Two algorithms, one based on a gradient approactharather based on
a cross entropy method are then presented for tuning theréeparameter. Certain
generalizations of the parameterized basis adaptatioroapip of [18] have been
presented in [29]. The basis adaptation scheme there iewdbw order calcula-
tions. In [15], a procedure based on state aggregation agtberhood component
analysis is used for constructing basis functions assuritigear approximation
architecture. In [8], Krylov subspace basis functionspiming powers of the tran-
sition probability matrix of the associated Markov chaie aised. Noisy samples
of the basis functions are obtained as they cannot be cochgxctly. In [17], a
Laurent series expansion of the value function is used feisbzonstruction. An-
other interesting work is [23] where through a recursivecpoure, an ‘ideal’ basis

function that is a representative of the value function imted. Whereas the above
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references deal with basis adaptation for the problem afigtien, in [13], the prob-
lem of control with adaptive bases is considered. Multis@adtor-critic algorithms
are developed where on the ‘slowest’ timescale, the fegtar@meters are updated.
Algorithms based on TD error, mean square Bellman error a@dnnsquare pro-
jected Bellman error are presented there. All of the abowksvoonsider features to
be parameterized and the goal in these references is to fimdalparameters and
thus the optimal features within the specific parameterigature classes. In [20],
feature adaptation for a problem of prediction is considetinlike in the above ref-
erences, the basis functions there are not assumed pareeetd he Bellman error
is included as an additional basis in each iteration, theirtreasing the dimension
of the subspace at each iteration. In [14], an a priori appraion of the value
function based on a simplified model as one of the featurebé&@s considered. In
[1], an approach that makes use of both state aggregatidimaad function approx-
imation is presented. While the feature matrix is kept fixeete, state aggregation
is done adaptively on a slower timescale using estimateBeo&pproximate value
function. In this case, one obtains locally optimal statestdrs asymptotically.

In this paper, we propose a new algorithm for feature adiaptatVe consider the
problem of prediction (i.e., estimating the value functmorresponding to a given
policy) under the infinite horizon discounted cost critaramd employ the TD learn-
ing scheme with linear function approximation for this pasp. We let all feature
components to take values only between 0 and 1. Upon convezgef the TD
scheme for a fixed set of features, we consider the convergaghtg in the weight

vector (i.e., the parameter whose scalar product with te-geature approximates
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the value of that state). We then replace two of the columrntb@ffeature matrix

that correspond to the two smallest components of the weggtor as follows. The

column of the feature matrix corresponding to the smallestmonent of the weight
vector is replaced by the most recent estimate of the vahuifan (suitably normal-

ized so that all its entries are between 0 and 1) obtainedraft@ing the TD scheme
for a given large number of iterations using the feature ixatrthe previous step,

while the column corresponding to the second smallest comptof the weight vec-

tor is replaced by independent and uniformly generatedaanaumbers between 0
and 1. Thus while the worst performer (amongst the columnbkefeature matrix)

is replaced by the normalized value function estimate, ¢élceisd-worst performer is
replaced with a random search direction to aid in explonatibbetter features and
thereby a better subspace than the previous. The remaiailnmnos of the feature
matrix are left unchanged. The TD algorithm is then run agath the new feature

matrix and the process repeated.

As an application setting, we consider the problem of egtimgathe value of a
policy in a problem of traffic signal control [21]. The genlezantrol problem in this
domain is to obtain a policy for signal switching across @asi sign configurations
so that traffic flow is maximized and levels of congestion aadde delays at the
traffic junctions are minimized. In [21], Q-learning withrfction approximation for
a given feature matrix is applied for this problem. By keggtime optimal policy (ob-
tained from the Q-learning algorithm in [21]) corresporglto the original feature
matrix fixed, we apply our algorithm for feature adaptation @bserve consistent

improvement in performance over “episodes” during eachlutivthe feature ma-
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trix is held fixed and TD is applied. We study the performanfoguws scheme on two
different network settings and observe performance imgmmeents in both.

The rest of the paper is organized as follows: In Section,28e2give the frame-
work. The feature adaptation scheme is presented in Se28 In Section 23.4,
we present a partial analysis of the convergence behavicauroscheme. In Sec-
tion 23.5, the results of numerical experiments in the taifnal control setting are

shown. Finally, Section 23.6 presents the concluding remar

23.2 THE FRAMEWORK

An MDP is a stochastic proceqsX, } taking values in a sef (called the state
space) that is governed by a control sequefi€g}. Let A(¢) be the set of feasible
controls or actions in stateand A 2 U;es A(7) be the set of all actions or the action
space. We assume that battand A are finite sets. The proce$X,,} satisfies the

controlled Markov property
P(Xn,+1 :j | XTYL7 vam S n) = p(Xn7 Zn,7j) asv

wherep : S x A x S — [0,1] is a given function for Whicth(i,a,j) =1,
Va € A(i),1 € S. e
A policy is a decision rule for selecting actions. We call geguencer 2 {1o,
p, ...y of mapsu, : S — A an admissible policy whep,, (i) € A(i) Vi € S. In
other words, each map, in an admissible policy assigns feasible controls to any

state. When,, = u, Vn > 0, wherey is independent of,, we call7 or by abuse of

notation,u itself a stationary deterministic policy (SDP).
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In what follows, we consider the MDPX,, } to be governed by a given (fixed)
SDP . In such a caséX,} is in fact a Markov chain taking values ifl. Let
(i, a) denote the single-stage cost when the Markov chain is ie s&td actiom

is picked. Giveny € (0, 1), let

VH(i) = Z’yc my (X)) | Xo =i (23.1)

denote the value function under SpRvhen the initial state of X, } is i. The value

function can be obtained by solving the system of equations

V() = eli w(@) +7 3 2, p(0) )V (), i € S, (23.2)

or in vector notation,

VI = ¢l + yPRVE, (23.3)

whereP* = [[p(i, u(3), 4)]]i,jes is the transition probability matrix of X, }, ¢** =
(c(i,u(i)),i € S)T is the vector of single-stage costs, antd = (V*(i),i € S)T is
the vector of ‘values’ over individual states respectiyalyder policyu. The system

of equations (23.3) yield the solution
VH = (I —yP*)"tek, (23.4)

wherel denotes thé€|S| x |S|)—identity matrix. When the size of the state space
(IS]) is large, obtaining the inverse of the mat(ix— vP*) is computationally hard.
An alternative is to solve (23.3) using a value iterationgeaure. However, since
(23.3) corresponds to a linear systen}$f equations, one expects such a procedure

to be slow as well for largées|.
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Another problem in using a purely numerical approach is thahost real life
situations, the transition probabilitigséi, 1:(7), 7), 4,7 € S are in fact not known. A
way out is to use a combination of value function approxiorafvia a so-called ap-
proximation architecture) and stochastic approximatibine former helps to make
the computational complexity manageable while the latedpdito learn the (ap-
proximated) value function with only real or simulated measnents and without
any knowledge of the transition probabilities.

We approximatd’*(j) ~ ¢(j)70, whereg(j) = (p1(5),...,0a(5))T is ad-
dimensional feature associated with statelso, 6 = (0(1),...,0(d))” is an as-
sociated parameter. Lét denote theS| x d feature matrix withp(5)7, j € S, as
its rows. Thusb = [[¢x(s)]]k=1.....d,ses- Let P 2 (¢1(s),s € S)T denote thekth
columnof®, k € {1,...,d}.

We make the following assumptions.

Assumption 1 The Markov chaif X,,} under SDPy is irreducible.

Assumption 2 Thed columns of the matri®, i.e.,¢1, ..., ¢4 are linearly indepen-

dent. Furtherd < |S].

From Assumption 1{ X,,} is also positive recurrent (sin¢§| < o). Letd*(3),
i € S be the stationary distribution dfX,,} under policyu. Further, letD* be a
diagonal matrix with entrieg" (i), ¢ € S along the diagonal. The regular TD(0)

algorithm is as follows:

The TD(0) Learning Algorithm
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9n+1 = 9n + a(n)5n¢(Xn)a (235)

whered,, is thetemporal difference terrthat is defined according to
5’” = (C(X7HM(XTL)) + 7¢(Xn+1)T9n - ¢(Xn)T9n)a n 2 0

Further,a(n),n > 0 is a sequence of step-sizes that satisfy

Za(n) = 00, ZaQ(n) < 0. (23.6)

The parameted,, is d-dimensional and has components (séyj}1),...,0,(d).
Thus,0,, = (0,(1),...,0,(d))T. The algorithm (23.5) is called the temporal differ-
ence learning (TD(0)) algorithm for the discounted cosecasd has been analyzed
for its convergence in a more general setting (XPith A € [0,1]) in [26]. The
average cost version of this algorithm has also been ardip4@7, 9].

It can be shown (see [26]) that the TD(0) algorithm (23.5Mewges according to

0, — 6* with probability one, as — oo, where
0 2 (07,...,05)7 = (@ DH(vP* — 1)®)~1®T DHck.
In the next section, we describe our feature adaptatiomsehe
23.3 THE FEATURE ADAPTATION SCHEME

We let all entries of the feature matrik to take values between 0 and 1. Recall

that we approximat®&’* (i) ~ ¢(i)76. Thus,V* = (V#(1),...,V#(|S|))T can be
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approximated as

S ()0
iy 65(2)0

X 61185 |

Alternatively, note that
d
V” ~ Z ¢J9J
j=1

We run the algorithm using a nested loop sequence with thexr tagp being run
for a total of R iterations. The feature matrix is updated in the outer loaEedure.
In between two successive updates of the outer loop, iseg fixed feature matrix
update, the inner loop comprising of TD recursions is rurafgiven (large) number
M of iterates in order to obtain a final parameter correspantbnthe aforemen-
tioned feature matrix (update). We call each suc¢hterate run of TD for a given
feature matrix an episode. Thus our scheme is run for a tbt& episodes. The

feature adaptation scheme is described in detail below:
The Feature Adaptation Scheme:

e Step O (Initialize): Select &S| x d feature matrix®® with columnse¢? =
(¢9(s),s € S)T,j = 1,...,d. Let®" have all its entries between 0 and
1 and let it satisfy Assumption 2. Set= 0 andn := 0, respectively. Set
V% = 0 to be the initial estimate of the value function. &t° = 0 be
the initial estimate of the normalized value function. AdevM and R to be

given large integers. Séf as the initial parameter value.
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e Step 1: Let®d” denote the feature matrix during théh step of the algorithm.

The(n + 1)st update of TD in theth step of the algorithm is given as follows:
0,1 =0, +a(n)o,¢"(Xn), (23.7)
wherea(n), n > 0 satisfy (23.6) and],, n > 0 are defined according to
0y = (e( X, (X)) + 70" (K1) 105, — &7 (X0)T0).

Setn:=n+1.1fn=M-1,setV];" = ®"0},, and go to Step 2; else repeat
Step 1.

2

o Step 2: Letly, = (65y,,....0%.) . Find @y, 05, k.1 € {1,...,d},

k # [ such that

Rf,k < 9}4\/[,l < 9}4\/[,3 \V/j € {L---adaj 7é k7] 7é l}

(Any tie is resolved according to some prescribed rule). adba new fea-
ture matrix®" ! as follows: First normalize/};" (by first letting any neg-
ative component to be zero and then dividing every compdmnenne with
the largest value) to obtail};". Thus, all entries of/};" lie between 0 and
1. Setg; ™' = V}". Next obtaing; ™' by picking all its entries indepen-
dently according to the uniform distribution df, 1]. Retain the remaining
columns in theb™ ! matrix from the matri>x®@" itself, i.e., set;ﬁf“ = ¢7 for
alli € {1,...,d} withi # k,1. Setd™*! to be the matrix with columng **,

j=1,...,d. Setr:==r+ 1. If r < R, go to Step 1; else go to Step 3.

e Step 3 (Termination): Outputy, as the final parameter value arid,(}R =

o9l as the corresponding value function estimate.
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We summarize the notation used with regards to the valudgibmbelow (as this

will also be used in the convergence analysis):

e V#: exact value function under poligy,

o VT = 70 estimate of the value function at théh iterate of algorithm

after thenth run of Step 1 {4/ > n > 0),

o V{;" = ®"07,: estimate of the value function after completion of Step 1

during therth iterate of algorithm (i.e., with = M),

e V" = ®70": estimate of the value function from Step 1 of algorithm & th
rthiterate if Step 1 was run until convergence of TD, i.e., welté = Mhm 0%y

with probability one,

e V{;": normalized estimate of value function after completiostefp 1 during

therth iterate of algorithm,

V#: projection of V* to S,..

Note above that we obtain the normalized value funciigh’ at each iterate of
the algorithm only after termination of Step 1 on that iterafonvergence of the TD
scheme for a given feature matdX, asM — oo, has been shown in the literature

[26], [7] under the weighted Euclidean notm || p. defined according to

| z |pu= VaT Drz,
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foranyz € RIS, LetS,, » = 1,2, ... denote the subspace
S, ={®"0 |60 c R

Let V* represent the best approximation to the value functignwithin the sub-
spaces,.. This is obtained by simply projectirig# to S,.. Note that TD (or for that
matter any other algorithm that operates only within thespaloeS,.) does not in
general converge to*. In fact the parameterd,, n > 0 obtained from TD, see

Step 1 of the feature adaptation scheme (above), convetfjeslmnost surely where
07 = (®" " DH(yP* — 1)®") 1" T Dt

This would correspond to a value function estimat&f” = ®"6” which is not the
same ad// even though boti/"" andV* are vectors in the subspasg. Since
we run TD for a fixed numbeh/ of instants during each visit of the algorithm to
Step 1, the estimate of the value function as given by TD d#fierth cycle (of M
iterates) isV{;" = ®"67},. By choosingM sufficiently large, one can bring down
the difference betweeVi{;" andV/"".

The key idea behind our adaptation scheme is the followimgceSone replaces
the ‘worst basis vector’ by the current best estimate of lees/function and the
‘next-to-worst basis vector’ by uniformly generated ramdoumbers, one ensures
that (a) the best linear combination of the basis functiortbé current subspace is
retained while (b) in addition, the scheme does a randonoextibn in order to find
a potentially better subspace than the current. As our @rpets demonstrate, it is
indeed seen to be the case that our adaptive scheme resigisificant performance

improvement.
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Remark 1 One possible variation is to pick new basis vectors from speeified
overcomplete basis. These vectors could be sparsely mpess Nevertheless, the
running estimate of the value function need not have a spaesentation. Thus

the algorithm stores all but one sparse vectors, thus sawingtorage.

Remark 2 Another possible tweak is to perform a Gram-Schmidt stepach aew
independent basis vector picked relative to the rest anthoggt by the unit normal
vector thus obtained. While this is aesthetically more gilegrand will avoid certain
‘low probability’ pathologies, it has a computational overad. We did not use this

tweak in our experiments as we obtained good results regsasd|

Remark 3 A good error estimate for fixed point of a projected linear waation
relative to fixed point of the contraction itself, that hold&h ‘high probability’

under certain dimensionality requirements on the rangéefgdrojection, is given in

(2].

In the next section, we give a partial analysis of the cormecg behaviour of our

feature adaptation scheme.

23.4 CONVERGENCE ANALYSIS

We first introduce some notation. L&t denote the unit sphere RI°!. Since we
normalize the basis vectors, they can be identified withtsamU. Let V- denote
the subspace oR!S! orthogonal toV* (recall thatV* is the true value function).
Let B C U denote the-neighborhood o~ N U in U for a smalle > 0. Let

D denote the:--neighborhood o/#. LetII, denote the projection tRange(P").
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ThenV# = IIL.(V*). Let ¥ : RISl x RISl — RIS| denote the map

U(z,y) = (@, y/llyly/llyll

e = y/llyDy/ Iyl

i.e., the component of orthogonal tay, normalized to have unit norm. Let

V‘u’ _ Vv*u,r
g - IVE=VET)
| Vi=VH
We have the following lemma.
1
Lemmal (a) 3, € [1, 1—] Vr > 0.
-

(b) For §3, close to one (for any > 0), V" =~ V*,

Proof: (a) Itis easy to see that the vectéi& — V", V# — V# andVF — V"
form a right angle triangle with’* — V/*" as the hypotenuse. Furth& — V* and
vV — V" form a right angle with/* — V/*" being a vector within the subspasg
andV* — V* being orthogonal t&,.. Thus,

| VE—VET ||| V=V,

implying thats,. > 1 Vr > 0. Further, from Lemma 6 of [26], we also obtain that

[ VF=VET< |V =Vl

(1-7)
Thus we also havg, < % Vr > 0.
-7

(b) By the Pythagorean theorem, we have
| VE—VET 2= VE =V 2+ || V=V |12 (23.8)

From (23.8), we obtain

| Ve — v |

2
r:1+ Ve ?
e
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or that
[ VE—VET = /B2 = 1| V=V
<2K\/B2 -1,

where K is an upper bound ofy V# ||. Thus if 3, is close to one, we have that

T YT
VI Vi =

Now let > 0 be such thaf V* — V/*" ||< v. Leta > 0 be such that it/ ¢ D
andz ¢ B is a unit vector, then fofl’ := projection ontoRange(®") andIl” :=

projection onto spaiRange(®") U {z}), we have
V-V <[V -T'(V)] -

Next, we will consider the actual err¢rV;" — V# || and show that it decreases
on the average asis increased whei/ is large enough. We have the following

result.

Theorem 23.1 Jag > 0 and M, > 0 such that fore > «, and M > M,

E[| Vi =Vl < BI VT = Ve

Proof: Note that because of the finitd/) step termination of the TD update in
between two successive updates of the feature matrix, thetiguV{;" is random

for any givenr > 0. The dynamics of V7", > 0} can be described according to
Vi = VT (Vi 6r), G,

where:
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1. thei.i.d. variableg¢, } denote the new basis vectors being inducted,

2. (41 captures the random inputs of the algorithm with the fixedshagtween

therth and(r + 1)th basis change, and,

3. g1 = (VLT €041), Gopn) = VI — VT is the error due to inexact

convergence (because of the finite run of TD).

Let, := V" — V*. Further, as before, lét be an upper bound dhV* ||. Note
that by Corollary 14, Chapter 4 of [L0iM, such that forM > M, 1,11 can be

bounded by a giver > 0 with probabilityl — §, § > 0 prescribed. Let

A, = {U(&41, Vi) € B},
C. = {||777’+1H2“}'

Then fore; > P(A,), we have

E(IVi™ = VHIL < B[V = VE+ Ellneall]

< E[IVEL = V] + Elllxrall] + Elllne+1]
< B[V, = VEILA] + B[V, = V| Lag]
+ Elllxr+1lll + Ell[nr411]]
< E[VF-V*] - a+2eaK + Ell|xr+1ll] + Ellnel]
< E[IVi" =Vl = a+2a K + E[|x.l] + E[l|In:]
+ Ellxr+1ll] + Ell[nr+11]
< E[V{" =Vl —a+2((e1+6)K + (1 —0)k +v).
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Letag :=2((e1 +0)K + (1 — §)x + v). Then fora > ay,
B[V = vEl < EllVa" — VEL

Further,oo > o will hold if ¢, v, k, ¢, are sufficiently small an#t};" ¢ D. O

From Theorem 23.1, the average norm difference betweenutbealue function
and the approximate value function to which TD(0) convefgea given set of bases
decreases as the set of bases is updated after each updagebafsis adaptation

scheme.

23.5 APPLICATION TO TRAFFIC SIGNAL CONTROL

We consider the problem of traffic signal control as an apfiic setting. The aim
in general for this problem is to find an optimal policy for suhiing signals at traf-
fic junctions in a road network so as to maximize flows and mirgndelays. The
signals that can be switched to green simultaneously forigracenfiguration. Q-
learning with linear function approximation has been agpfior this control prob-
lem in [21]. We, however, consider the problem of adaptivelying the feature
matrix when actions are chosen according to a given polibg golicy that we use
is obtained using the Q-learning algorithm from [21], i&fter convergence of the
Q-learning algorithm. We apply the feature adaptation sehéescribed in Sec-
tion 23.3.

Consider a road network witlw. > 1 junctions andV signalled lanes. We let the
state be the vector of queue lengths on individual lanes &ité@lapsed times since

the signal turned red on each of those lanes that have a sajfial (at the various
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junctions). We assume that there is a central controlldrréweives the state infor-
mation from the various lanes and based on the given policyeys information to
the individual junctions regarding which traffic lights twitch green during a cycle.
We assume no delays in the transfer of information from fie)dontroller to (from)
the various lanes. (Accounting for bounded delays wouldsamidher asymptotically

vanishing error term — see Chapter 7 of [10].) The state s is the tuple

Sp = (Q1(n)7 . '7QN(n)at1(n)a s atN(n))a

whereg;(n),...,qn(n) are the queue lengths on each of tNelanes at instant
n. Similarly, t1(n),...,tx(n) are the elapsed times on each of the above lanes.
The actionsa,, correspond to the sign configurations, i.e., feasible coatiin
of traffic lights to switch at each of the: junctions in the road network. Thus,
an = (a1(n),...,am(n)), wherea,(n) is the sign configuration at junctiarin the
time slotn. We only allow those sign configurations to be in the actidrttsat are
feasible and ignore all other (infeasible) sign configuradi This helps keep the
computational complexity manageable.

As with [21], we allow lanes on the main road to have a high&nrjy than those
on the side roads. This is accomplished through the form efcthst function as
explained below. Lef,, denote the set of lanes that are on the main road. Then the
form of the cost functior(s,,, a,,) is given by

c(smoan) = 1% (Pieq, r2 % qi(n) + gy 52 % qi(n))
+ sk (ZiEIp re *ti(n) + Zi¢1p sz *ti(n)).

Herer;,s; > 0 are certain weights that satisfy + s; = 1,¢ = 1,2. Further, we

let o > so. In our experiments, we let; = s; = 0.5. Thus, we assign equal
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Figure23.1 A Single-Junction Road Network

weightage to both queue lengths and elapsed times. Fuvikdetr, = 0.6 and
s9 = 0.4, respectively. Thus, queue lengths and elapsed timesrfeslan the main
road are weighted more than those on the side roads. We latisheunt factor
~v = 0.9 in the experiments.

We consider two different road traffic networks: (a) a netweith a single traffic
signal junction and (b) a corridor with two traffic signal tions. The two networks
are shown in Figures 23.1 and 23.2, respectively. We imphteaethese network
settings and our algorithm on the green light district (Glopgn source software for
road traffic simulations [28].

We study the performance of our feature adaptation scheing estimates of
E[| Vi7" |ll. Recall that from Theorem 23.1, the estimated V{;" — V* ||]
diminish with . The value functiori/’#, however, is not available, so we use the

fact that by the foregoing[|| V{;" ||] will tend to increase. For estimating|||
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Figure23.2 A Corridor Network with Two Junctions

Vir" |l], we use the sample averages of the estimatéis6f;" ||. As mentioned
previously, we letl,” = &"0] denote thesth estimate of the value function when
the feature matrix i9". We obtain the aforementioned sample averages by running

the recursion

w1 = (L=a)Z, +al V|,

where for any givem € {0, 1, ..., R—1}, the above recursionis run faf iterations
i.e., withn € {0,1,...,M — 1}. Next, the value of- is updated and the above
procedure repeated. Hedds a small step-size that we select to be 0.001. By abuse
of notation, we denot&] asZ,, in these figures where: denotes the number of
cycles or time instants (in absolute terms) ire.€ {0,1,..., RM — 1}, whenZ,,
is updated.

We call each group of\/ cycles when the feature matrik” is held fixed for

somer, an episode. We conducted our experiments for the casesgiegunction
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Figure23.3 Plot of Z,,, vs.m in the Case of Single-Junction Road Network
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Figure 23.4  Plot of Z,, vs. m after 40,000 Cycles in the Case of Single-Junction Road
Network

and two-junction-corridor networks for a total of 150 emlss in each where each
episode comprised of 2,500 cycles. Thus= 2500 and R = 150 in our experi-

ments.
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Table23.1 Performance Improvement with Feature Adaptation for the
Single-Junction Road Network

‘ # Cycle Zm | Zm — Znm-a,
(m) (m =M —1)
| 2499 | 51042.23| |
| 74999 | 54003.00| 2960.76 |
| 149999 | 54116.59| 3074.36 |
| 224999 | 54260.28| 3218.05 |
| 299999 | 54255.38| 3213.15|
| 374999 | 54274.72| 3232.49 |

For the single-junction case, we show in Figure 23.3 theqfidt,,, as a function
of m (the number of cycles). We observe that there is a significgmtovement after
the first episode which results in a steep jump in fHg value. In subsequent)
iterations when th@"™ matrix is updated, the performance improvement continues,
though in smaller steps. The improvement in performanaa fieature adaptation
can be seen more clearly in Figure 23.4, when the valugs,oére plotted formn >
40,000. The value of7Z,,, as well as the differencg,, — Z,,_; i.e., improvement
in‘ Z,,, performance’ in relation to its value obtained after the ptetion of the first
episode (i.e., with the originally selected feature matisxsshown at the end of the
30th, 60th, 90th, 120th and 150th episodes respectivellite 23.1. As expected,

the values ofZ,,, are seen to consistently increase here.

Next, for the case of the two-junction corridor road netwarle show a similar
plot of Z,,, as a function ofn in Figure 23.5. Further, in Figure 23.6, we show the

same plot for cycles 40,000 onwards to show performanceauwgment resulting
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Figure23.5 Plot of Z,,, vs.m in the Case of Two-Junction Corridor Network
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Figure 23.6  Plot of Z,,, vs. m after 40,000 Cycles in the Case of Two-Junction Corridor
Network

from feature adaptation. Similar observations as for thglsijunction case hold in

the case of the two-junction corridor as well.
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Table23.2 Performance Improvement with Feature Adaptation for the-Jwnction
Corridor Road Network

‘ # Cycle Im | Zm — Zni—1
(m) (m>M-1)
| 2499 | 53480.65| |
| 74999 | 53834.04| 353.39 |
| 149999 | 53985.54| 504.89 |
| 224999 | 54166.69| 686.04 |
| 299999 | 54167.99| 687.34 |
| 374999 | 54207.78| 727.13 |

Finally, as before, we show in Table 23.2, the valuesZgf as well as of the
differenceZ,, — Z,,;_1 at the end of the 30th, 60th, 90th, 120th and 150th episodes

respectively. The values df,,, are again seen to consistently increase here as well.

23.6 CONCLUSIONS

We presented in this paper a novel online feature adaptakjmmithm. We observed
significant performance improvements on two differentisgt for a problem of
traffic signal control. We considered the problem of predichere and applied our
feature adaptation scheme in conjunction with the temmbiff@irence learning algo-
rithm. As future work, one may consider the application of algorithm together
with other schemes such as least squares temporal difle(e8d D) learning [12],
[11] and least squares policy evaluation (LSPE) [19], [6prBbver, one may apply
a similar scheme for the problem of control, for instance¢amjunction with the

actor-critic algorithms in [16] and [9].
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