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Abstract

We present a novel feature adaptation scheme based on temporal difference learning

for the problem of prediction. The scheme suitably combinesaspects ofexploita-

tion andexplorationby (a) finding the worst basis vector in the feature matrix at

each stage and replacing it with the current best estimate ofthe normalized value

function, and (b) replacing the second worst basis vector with another vector chosen

randomly that would result in a new subspace of basis vectorsgetting picked. We
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apply our algorithm to a problem of prediction in traffic signal control and observe

good performance over two different network settings.

Key Words: Online feature adaptation, temporal difference learning,traffic sig-

nal control.

23.1 INTRODUCTION

Markov decision process (MDP) [3, 4, 22] is a general framework for solving stochas-

tic control problems. Classical solution approaches for MDP such as policy and

value iteration solve the associated control problem precisely by identifying an opti-

mal action to pick in each state. These approaches typicallysuffer from two major

problems: (a) they require precise knowledge of the transition probabilities i.e., the

system model, and (b) the amount of computation required to obtain a solution using

these approaches grows exponentially with the size of the state and/or action space.

Reinforcement learning (RL) [7], [5], [25] provides efficient solutions for both prob-

lems above. Many RL algorithms are incremental update stochastic approximation

algorithms that work directly with real or simulated data. These algorithms make use

of the averaging property of stochastic approximation as a result of which they work

efficiently even when the system transition model is not known. For problems where

the cardinality of the state/action space is so large that precise solutions cannot be

obtained easily, one resorts to certain approximation methods. Often the value func-

tion is approximated as a function of certain parameter(s).The functional form of

the approximator is also called an architecture. Architectures based on linear func-
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tion approximators have been well studied in the literaturebecause algorithms such

as temporal difference (TD) learning [24] have been shown convergent when linear

architectures are used [26], [27]. Here the value of a given state is approximated

using the scalar product of the parameter vector with the feature associated with the

state. The feature usually quantifies important state attributes. On the other hand,

TD with nonlinear function approximators has been seen to diverge in some cases.

An important problem that we address in this paper is to design an efficient scheme

to adaptively select the ‘best features’ when linear function approximation is used.

The problem of feature adaptation has been studied recentlyfor problems of pre-

diction as well as control. In [18], features are assumed parameterized and the prob-

lem considered is one of finding the optimum feature parameter when TD learning

is used. Two algorithms, one based on a gradient approach andthe other based on

a cross entropy method are then presented for tuning the feature parameter. Certain

generalizations of the parameterized basis adaptation approach of [18] have been

presented in [29]. The basis adaptation scheme there involves low order calcula-

tions. In [15], a procedure based on state aggregation and neighborhood component

analysis is used for constructing basis functions assuminga linear approximation

architecture. In [8], Krylov subspace basis functions, involving powers of the tran-

sition probability matrix of the associated Markov chain are used. Noisy samples

of the basis functions are obtained as they cannot be computed exactly. In [17], a

Laurent series expansion of the value function is used for basis construction. An-

other interesting work is [23] where through a recursive procedure, an ‘ideal’ basis

function that is a representative of the value function is obtained. Whereas the above
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references deal with basis adaptation for the problem of prediction, in [13], the prob-

lem of control with adaptive bases is considered. Multiscale actor-critic algorithms

are developed where on the ‘slowest’ timescale, the featureparameters are updated.

Algorithms based on TD error, mean square Bellman error and mean square pro-

jected Bellman error are presented there. All of the above works consider features to

be parameterized and the goal in these references is to find optimal parameters and

thus the optimal features within the specific parameterizedfeature classes. In [20],

feature adaptation for a problem of prediction is considered. Unlike in the above ref-

erences, the basis functions there are not assumed parameterized. The Bellman error

is included as an additional basis in each iteration, thereby increasing the dimension

of the subspace at each iteration. In [14], an a priori approximation of the value

function based on a simplified model as one of the features hasbeen considered. In

[1], an approach that makes use of both state aggregation andlinear function approx-

imation is presented. While the feature matrix is kept fixed there, state aggregation

is done adaptively on a slower timescale using estimates of the approximate value

function. In this case, one obtains locally optimal state clusters asymptotically.

In this paper, we propose a new algorithm for feature adaptation. We consider the

problem of prediction (i.e., estimating the value functioncorresponding to a given

policy) under the infinite horizon discounted cost criterion and employ the TD learn-

ing scheme with linear function approximation for this purpose. We let all feature

components to take values only between 0 and 1. Upon convergence of the TD

scheme for a fixed set of features, we consider the converged weights in the weight

vector (i.e., the parameter whose scalar product with the state-feature approximates
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the value of that state). We then replace two of the columns ofthe feature matrix

that correspond to the two smallest components of the weightvector as follows. The

column of the feature matrix corresponding to the smallest component of the weight

vector is replaced by the most recent estimate of the value function (suitably normal-

ized so that all its entries are between 0 and 1) obtained after running the TD scheme

for a given large number of iterations using the feature matrix of the previous step,

while the column corresponding to the second smallest component of the weight vec-

tor is replaced by independent and uniformly generated random numbers between 0

and 1. Thus while the worst performer (amongst the columns ofthe feature matrix)

is replaced by the normalized value function estimate, the second-worst performer is

replaced with a random search direction to aid in exploration of better features and

thereby a better subspace than the previous. The remaining columns of the feature

matrix are left unchanged. The TD algorithm is then run againwith the new feature

matrix and the process repeated.

As an application setting, we consider the problem of estimating the value of a

policy in a problem of traffic signal control [21]. The general control problem in this

domain is to obtain a policy for signal switching across various sign configurations

so that traffic flow is maximized and levels of congestion and hence delays at the

traffic junctions are minimized. In [21], Q-learning with function approximation for

a given feature matrix is applied for this problem. By keeping the optimal policy (ob-

tained from the Q-learning algorithm in [21]) corresponding to the original feature

matrix fixed, we apply our algorithm for feature adaptation and observe consistent

improvement in performance over “episodes” during each of which the feature ma-
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trix is held fixed and TD is applied. We study the performance of our scheme on two

different network settings and observe performance improvements in both.

The rest of the paper is organized as follows: In Section 23.2, we give the frame-

work. The feature adaptation scheme is presented in Section23.3. In Section 23.4,

we present a partial analysis of the convergence behaviour of our scheme. In Sec-

tion 23.5, the results of numerical experiments in the traffic signal control setting are

shown. Finally, Section 23.6 presents the concluding remarks.

23.2 THE FRAMEWORK

An MDP is a stochastic process{Xn} taking values in a setS (called the state

space) that is governed by a control sequence{Zn}. Let A(i) be the set of feasible

controls or actions in statei andA
△
= ∪i∈SA(i) be the set of all actions or the action

space. We assume that bothS andA are finite sets. The process{Xn} satisfies the

controlled Markov property

P (Xn+1 = j | Xm, Zm, m ≤ n) = p(Xn, Zn, j) a.s.,

wherep : S × A × S → [0, 1] is a given function for which
∑

j∈S

p(i, a, j) = 1,

∀a ∈ A(i), i ∈ S.

A policy is a decision rule for selecting actions. We call thesequencēπ
△
= {µ0,

µ1, . . .} of mapsµn : S → A an admissible policy whenµn(i) ∈ A(i) ∀i ∈ S. In

other words, each mapµn in an admissible policy assigns feasible controls to any

state. Whenµn ≡ µ, ∀n ≥ 0, whereµ is independent ofn, we callπ̄ or by abuse of

notation,µ itself a stationary deterministic policy (SDP).
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In what follows, we consider the MDP{Xn} to be governed by a given (fixed)

SDPµ. In such a case{Xn} is in fact a Markov chain taking values inS. Let

c(i, a) denote the single-stage cost when the Markov chain is in state i and actiona

is picked. Givenγ ∈ (0, 1), let

V µ(i) = E

[

∞
∑

m=0

γmc(Xm, µ(Xm)) | X0 = i

]

(23.1)

denote the value function under SDPµ when the initial state of{Xn} is i. The value

function can be obtained by solving the system of equations

V µ(i) = c(i, µ(i)) + γ
∑

j∈S

p(i, µ(i), j)V µ(j), i ∈ S, (23.2)

or in vector notation,

V µ = cµ + γPµV µ, (23.3)

wherePµ = [[p(i, µ(i), j)]]i,j∈S is the transition probability matrix of{Xn}, cµ =

(c(i, µ(i)), i ∈ S)T is the vector of single-stage costs, andV µ = (V µ(i), i ∈ S)T is

the vector of ‘values’ over individual states respectively, under policyµ. The system

of equations (23.3) yield the solution

V µ = (I − γPµ)−1cµ, (23.4)

whereI denotes the(|S| × |S|)–identity matrix. When the size of the state space

(|S|) is large, obtaining the inverse of the matrix(I − γPµ) is computationally hard.

An alternative is to solve (23.3) using a value iteration procedure. However, since

(23.3) corresponds to a linear system of|S| equations, one expects such a procedure

to be slow as well for large|S|.
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Another problem in using a purely numerical approach is thatin most real life

situations, the transition probabilitiesp(i, µ(i), j), i, j ∈ S are in fact not known. A

way out is to use a combination of value function approximation (via a so-called ap-

proximation architecture) and stochastic approximation.The former helps to make

the computational complexity manageable while the latter helps to learn the (ap-

proximated) value function with only real or simulated measurements and without

any knowledge of the transition probabilities.

We approximateV µ(j) ≈ φ(j)T θ, whereφ(j) = (φ1(j), . . . , φd(j))
T is a d-

dimensional feature associated with statei. Also, θ = (θ(1), . . . , θ(d))T is an as-

sociated parameter. LetΦ denote the|S| × d feature matrix withφ(j)T , j ∈ S, as

its rows. ThusΦ = [[φk(s)]]k=1,...,d,s∈S. Let φk
△
= (φk(s), s ∈ S)T denote thekth

column ofΦ, k ∈ {1, . . . , d}.

We make the following assumptions.

Assumption 1 The Markov chain{Xn} under SDPµ is irreducible.

Assumption 2 Thed columns of the matrixΦ, i.e.,φ1, . . . , φd are linearly indepen-

dent. Further,d ≤ |S|.

From Assumption 1,{Xn} is also positive recurrent (since|S| < ∞). Let dµ(i),

i ∈ S be the stationary distribution of{Xn} under policyµ. Further, letDµ be a

diagonal matrix with entriesdµ(i), i ∈ S along the diagonal. The regular TD(0)

algorithm is as follows:

The TD(0) Learning Algorithm
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θn+1 = θn + a(n)δnφ(Xn), (23.5)

whereδn is thetemporal difference termthat is defined according to

δn = (c(Xn, µ(Xn)) + γφ(Xn+1)
T θn − φ(Xn)T θn), n ≥ 0.

Further,a(n), n ≥ 0 is a sequence of step-sizes that satisfy

∑

n

a(n) = ∞,
∑

n

a2(n) < ∞. (23.6)

The parameterθn is d-dimensional and has components (say)θn(1), . . . , θn(d).

Thus,θn = (θn(1), . . . , θn(d))T . The algorithm (23.5) is called the temporal differ-

ence learning (TD(0)) algorithm for the discounted cost case and has been analyzed

for its convergence in a more general setting (TD(λ) with λ ∈ [0, 1]) in [26]. The

average cost version of this algorithm has also been analyzed in [27, 9].

It can be shown (see [26]) that the TD(0) algorithm (23.5) converges according to

θn → θ∗ with probability one, asn → ∞, where

θ∗
△
= (θ∗1 , . . . , θ∗d)T = (Φ⊤Dµ(γPµ − I)Φ)−1Φ⊤Dµcµ.

In the next section, we describe our feature adaptation scheme.

23.3 THE FEATURE ADAPTATION SCHEME

We let all entries of the feature matrixΦ to take values between 0 and 1. Recall

that we approximateV µ(i) ≈ φ(i)T θ. Thus,V µ = (V µ(1), . . . , V µ(|S|))T can be
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approximated as

V µ ≈ Φθ =



















∑d
j=1

φj(1)θj
∑d

j=1
φj(2)θj

·
·
·

∑d
j=1

φj(|S|)θj



















.

Alternatively, note that

V µ ≈
d

∑

j=1

φjθj .

We run the algorithm using a nested loop sequence with the outer loop being run

for a total ofR iterations. The feature matrix is updated in the outer loop procedure.

In between two successive updates of the outer loop, i.e., for a fixed feature matrix

update, the inner loop comprising of TD recursions is run fora given (large) number

M of iterates in order to obtain a final parameter corresponding to the aforemen-

tioned feature matrix (update). We call each suchM -iterate run of TD for a given

feature matrix an episode. Thus our scheme is run for a total of R episodes. The

feature adaptation scheme is described in detail below:

The Feature Adaptation Scheme:

• Step 0 (Initialize): Select a|S| × d feature matrixΦ0 with columnsφ0
j =

(φ0
j (s), s ∈ S)T , j = 1, . . . , d. Let Φ0 have all its entries between 0 and

1 and let it satisfy Assumption 2. Setr := 0 andn := 0, respectively. Set

V µ,0
0 = 0 to be the initial estimate of the value function. LetV̄ µ,0

0 = 0 be

the initial estimate of the normalized value function. AlsosetM andR to be

given large integers. Setθ0
0 as the initial parameter value.
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• Step 1: LetΦr denote the feature matrix during therth step of the algorithm.

The(n+1)st update of TD in therth step of the algorithm is given as follows:

θr
n+1 = θr

n + a(n)δr
nφr(Xn), (23.7)

wherea(n), n ≥ 0 satisfy (23.6) andδr
n, n ≥ 0 are defined according to

δr
n = (c(Xn, µ(Xn)) + γφr(Xn+1)

T θr
n − φr(Xn)T θr

n).

Setn := n+1. If n = M −1, setV µ,r
M = Φrθr

M , and go to Step 2; else repeat

Step 1.

• Step 2: Letθr
M

△
= (θr

M,1, . . . , θ
r
M,d)

T . Find θr
M,k, θr

M,l, k, l ∈ {1, . . . , d},

k 6= l such that

θr
M,k ≤ θr

M,l ≤ θr
M,j ∀j ∈ {1, . . . , d, j 6= k, j 6= l}.

(Any tie is resolved according to some prescribed rule). Obtain a new fea-

ture matrixΦr+1 as follows: First normalizeV µ,r
M (by first letting any neg-

ative component to be zero and then dividing every componentby one with

the largest value) to obtain̄V µ,r
M . Thus, all entries of̄V µ,r

M lie between 0 and

1. Setφr+1

k := V̄ µ,r
M . Next obtainφr+1

l by picking all its entries indepen-

dently according to the uniform distribution on[0, 1]. Retain the remaining

columns in theΦr+1 matrix from the matrixΦr itself, i.e., setφr+1

i := φr
i for

all i ∈ {1, . . . , d} with i 6= k, l. SetΦr+1 to be the matrix with columnsφr+1

j ,

j = 1, . . . , d. Setr := r + 1. If r < R, go to Step 1; else go to Step 3.

• Step 3 (Termination): OutputθR
M as the final parameter value andV µ,R

M =

ΦRθR
M as the corresponding value function estimate.
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We summarize the notation used with regards to the value function below (as this

will also be used in the convergence analysis):

• V µ: exact value function under policyµ,

• V µ,r
n = Φrθr

n: estimate of the value function at therth iterate of algorithm

after thenth run of Step 1 (M ≥ n ≥ 0),

• V µ,r
M = Φrθr

M : estimate of the value function after completion of Step 1

during therth iterate of algorithm (i.e., withn = M ),

• V µ,r
∗ = Φrθr

∗: estimate of the value function from Step 1 of algorithm at the

rth iterate if Step 1 was run until convergence of TD, i.e., whereθr
∗ = lim

M→∞
θr

M

with probability one,

• V̄ µ,r
M : normalized estimate of value function after completion ofStep 1 during

therth iterate of algorithm,

• V̌ µ
r : projection ofV µ to Sr.

Note above that we obtain the normalized value functionV̄ µ,r
M at each iterater of

the algorithm only after termination of Step 1 on that iterate. Convergence of the TD

scheme for a given feature matrixΦr, asM → ∞, has been shown in the literature

[26], [7] under the weighted Euclidean norm‖ · ‖Dµ defined according to

‖ x ‖Dµ=
√

x⊤Dµx,
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for anyx ∈ R|S|. Let Sr, r = 1, 2, . . . denote the subspace

Sr = {Φrθ | θ ∈ Rd}.

Let V̌ µ
r represent the best approximation to the value functionV µ within the sub-

spaceSr. This is obtained by simply projectingV µ to Sr. Note that TD (or for that

matter any other algorithm that operates only within the subspaceSr) does not in

general converge tǒV µ
r . In fact the parametersθr

n, n ≥ 0 obtained from TD, see

Step 1 of the feature adaptation scheme (above), converge toθr
∗ almost surely where

θr
∗ = (Φr⊤Dµ(γPµ − I)Φr)−1Φr⊤Dµcµ.

This would correspond to a value function estimate ofV µ,r
∗ = Φrθr

∗ which is not the

same ašV µ
r even though bothV µ,r

∗ andV̌ µ
r are vectors in the subspaceSr. Since

we run TD for a fixed numberM of instants during each visit of the algorithm to

Step 1, the estimate of the value function as given by TD aftertherth cycle (ofM

iterates) isV µ,r
M = Φrθr

M . By choosingM sufficiently large, one can bring down

the difference betweenV µ,r
M andV µ,r

∗ .

The key idea behind our adaptation scheme is the following: Since one replaces

the ‘worst basis vector’ by the current best estimate of the value function and the

‘next-to-worst basis vector’ by uniformly generated random numbers, one ensures

that (a) the best linear combination of the basis functions in the current subspace is

retained while (b) in addition, the scheme does a random exploration in order to find

a potentially better subspace than the current. As our experiments demonstrate, it is

indeed seen to be the case that our adaptive scheme results insignificant performance

improvement.



14 ADAPTIVE FEATURE PURSUIT: ONLINE ADAPTATION OF FEATURES IN REINFORCEMENT LEARNING

Remark 1 One possible variation is to pick new basis vectors from a prespecified

overcomplete basis. These vectors could be sparsely represented. Nevertheless, the

running estimate of the value function need not have a sparserepresentation. Thus

the algorithm stores all but one sparse vectors, thus savingon storage.

Remark 2 Another possible tweak is to perform a Gram-Schmidt step on each new

independent basis vector picked relative to the rest and replace it by the unit normal

vector thus obtained. While this is aesthetically more pleasing and will avoid certain

‘low probability’ pathologies, it has a computational overhead. We did not use this

tweak in our experiments as we obtained good results regardless.

Remark 3 A good error estimate for fixed point of a projected linear contraction

relative to fixed point of the contraction itself, that holdswith ‘high probability’

under certain dimensionality requirements on the range of the projection, is given in

[2].

In the next section, we give a partial analysis of the convergence behaviour of our

feature adaptation scheme.

23.4 CONVERGENCE ANALYSIS

We first introduce some notation. LetU denote the unit sphere inR|S|. Since we

normalize the basis vectors, they can be identified with points in U . Let V ⊥ denote

the subspace ofR|S| orthogonal toV µ (recall thatV µ is the true value function).

Let B ⊂ U denote theǫ-neighborhood ofV ⊥ ∩ U in U for a smallǫ > 0. Let

D denote theǫ-neighborhood ofV µ. Let Πr denote the projection toRange(Φr).
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ThenV̌ µ
r = Πr(V

µ). Let Ψ : R|S| ×R|S| → R|S| denote the map

Ψ(x, y) :=
x − 〈x, y/‖y‖〉y/‖y‖

‖x − 〈x, y/‖y‖〉y/‖y‖‖,

i.e., the component ofx orthogonal toy, normalized to have unit norm. Let

βr =
‖ V µ − V µ,r

∗ ‖
‖ V µ − V̌ µ

r ‖
.

We have the following lemma.

Lemma 1 (a) βr ∈
[

1,
1

1 − γ

]

∀r ≥ 0.

(b) For βr close to one (for anyr ≥ 0), V µ,r
∗ ≈ V̌ µ

r .

Proof: (a) It is easy to see that the vectorsV µ − V µ,r
∗ , V µ − V̌ µ

r andV̌ µ
r − V µ,r

∗

form a right angle triangle withV µ−V µ,r
∗ as the hypotenuse. Further,V µ− V̌ µ

r and

V̌ µ
r −V µ,r

∗ form a right angle witȟV µ
r −V µ,r

∗ being a vector within the subspaceSr

andV µ − V̌ µ
r being orthogonal toSr. Thus,

‖ V µ − V µ,r
∗ ‖≥‖ V µ − V̌ µ

r ‖,

implying thatβr ≥ 1 ∀r ≥ 0. Further, from Lemma 6 of [26], we also obtain that

‖ V µ − V µ,r
∗ ‖≤ 1

(1 − γ)
‖ V µ − V̌ µ

r ‖ .

Thus we also haveβr ≤ 1

1 − γ
∀r ≥ 0.

(b) By the Pythagorean theorem, we have

‖ V µ − V µ,r
∗ ‖2=‖ V µ − V̌ µ

r ‖2 + ‖ V̌ µ
r − V µ,r

∗ ‖2 . (23.8)

From (23.8), we obtain

β2
r = 1 +

‖ V̌ µ
r − V µ,r

∗ ‖2

‖ V µ − V̌ µ
r ‖2

,
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or that

‖ V̌ µ
r − V µ,r

∗ ‖=
√

β2
r − 1 ‖ V µ − V̌ µ

r ‖

≤ 2K
√

β2
r − 1,

whereK is an upper bound on‖ V µ ‖. Thus if βr is close to one, we have that

V µ,r
∗ ≈ V̌ µ

r . 2

Now letν > 0 be such that‖ V̌ µ
r − V µ,r

∗ ‖< ν. Let α > 0 be such that ifV /∈ D

andz /∈ B is a unit vector, then forΠ′ := projection ontoRange(Φr) andΠ′′ :=

projection onto span(Range(Φr) ∪ {z}), we have

‖V − Π′′(V )‖ ≤ ‖V − Π′(V )‖ − α.

Next, we will consider the actual error‖ V µ,r
M − V µ ‖ and show that it decreases

on the average asr is increased whenM is large enough. We have the following

result.

Theorem 23.1 ∃α0 > 0 andM0 > 0 such that forα > α0, andM ≥ M0,

E[‖ V µ,r+1

M − V µ ‖] < E[‖ V µ,r
M − V µ ‖].

Proof: Note that because of the finite (M ) step termination of the TD update in

between two successive updates of the feature matrix, the quantity V µ,r
M is random

for any givenr ≥ 0. The dynamics of{V µ,r
M , r ≥ 0} can be described according to

V µ,r+1

M = V µ,r+1
∗ + η((V µ,r

M , ξr+1), ζr+1),

where:
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1. the i.i.d. variables{ξr} denote the new basis vectors being inducted,

2. ζr+1 captures the random inputs of the algorithm with the fixed basis, between

therth and(r + 1)th basis change, and,

3. ηr+1 := η((V µ,r
M , ξr+1), ζr+1) = V µ,r+1

M − V µ,r+1
∗ is the error due to inexact

convergence (because of the finite run of TD).

Let χr := V µ,r
∗ − V̌ µ

r . Further, as before, letK be an upper bound on‖ V µ ‖. Note

that by Corollary 14, Chapter 4 of [10],∃M0 such that forM ≥ M0, ηr+1 can be

bounded by a givenκ > 0 with probability1 − δ, δ > 0 prescribed. Let

Ar = {Ψ(ξr+1, V
µ,r
M ) ∈ B},

Cr = {‖ηr+1‖ ≥ κ}.

Then forǫ1 > P (Ar), we have

E[‖V µ,r+1

M − V µ‖] ≤ E[‖V µ,r+1
∗ − V µ‖] + E[‖ηr+1‖]

≤ E[‖V̌ µ
r+1 − V µ‖] + E[‖χr+1‖] + E[‖ηr+1‖]

≤ E[‖V̌ µ
r+1 − V µ‖IAr

] + E[‖V̌ µ
r+1 − V µ‖IAc

r
]

+ E[‖χr+1‖] + E[‖ηr+1‖]

≤ E[‖V̌ µ
r − V µ‖] − α + 2ǫ1K + E[‖χr+1‖] + E[‖ηr+1‖]

≤ E[‖V µ,r
M − V µ‖] − α + 2ǫ1K + E[‖χr‖] + E[‖ηr‖]

+ E[‖χr+1‖] + E[‖ηr+1‖]

≤ E[‖V µ,r
M − V µ‖] − α + 2((ǫ1 + δ)K + (1 − δ)κ + ν).
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Let α0 := 2((ǫ1 + δ)K + (1 − δ)κ + ν). Then forα > α0,

E[‖V µ,r+1

M − V µ‖] < E[‖V µ,r
M − V µ‖].

Further,α > α0 will hold if δ, ν, κ, ǫ1 are sufficiently small andV µ,r
M /∈ D. 2

From Theorem 23.1, the average norm difference between the true value function

and the approximate value function to which TD(0) convergesfor a given set of bases

decreases as the set of bases is updated after each update of the basis adaptation

scheme.

23.5 APPLICATION TO TRAFFIC SIGNAL CONTROL

We consider the problem of traffic signal control as an application setting. The aim

in general for this problem is to find an optimal policy for switching signals at traf-

fic junctions in a road network so as to maximize flows and minimize delays. The

signals that can be switched to green simultaneously form a sign configuration. Q-

learning with linear function approximation has been applied for this control prob-

lem in [21]. We, however, consider the problem of adaptivelytuning the feature

matrix when actions are chosen according to a given policy. The policy that we use

is obtained using the Q-learning algorithm from [21], i.e.,after convergence of the

Q-learning algorithm. We apply the feature adaptation scheme described in Sec-

tion 23.3.

Consider a road network withm ≥ 1 junctions andN signalled lanes. We let the

state be the vector of queue lengths on individual lanes and of the elapsed times since

the signal turned red on each of those lanes that have a trafficsignal (at the various
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junctions). We assume that there is a central controller that receives the state infor-

mation from the various lanes and based on the given policy, conveys information to

the individual junctions regarding which traffic lights to switch green during a cycle.

We assume no delays in the transfer of information from (to) the controller to (from)

the various lanes. (Accounting for bounded delays would addanother asymptotically

vanishing error term – see Chapter 7 of [10].) The state at instantn is the tuple

sn = (q1(n), . . . , qN (n), t1(n), . . . , tN (n)),

whereq1(n), . . . , qN (n) are the queue lengths on each of theN lanes at instant

n. Similarly, t1(n), . . . , tN (n) are the elapsed times on each of the above lanes.

The actionsan correspond to the sign configurations, i.e., feasible combination

of traffic lights to switch at each of them junctions in the road network. Thus,

an = (a1(n), . . . , am(n)), whereai(n) is the sign configuration at junctioni in the

time slotn. We only allow those sign configurations to be in the action set that are

feasible and ignore all other (infeasible) sign configurations. This helps keep the

computational complexity manageable.

As with [21], we allow lanes on the main road to have a higher priority than those

on the side roads. This is accomplished through the form of the cost function as

explained below. LetIp denote the set of lanes that are on the main road. Then the

form of the cost functionc(sn, an) is given by

c(sn, an) = r1 ∗ (
∑

i∈Ip
r2 ∗ qi(n) +

∑

i/∈Ip
s2 ∗ qi(n))

+ s1 ∗ (
∑

i∈Ip
r2 ∗ ti(n) +

∑

i/∈Ip
s2 ∗ ti(n)).

Hereri, si ≥ 0 are certain weights that satisfyri + si = 1, i = 1, 2. Further, we

let r2 > s2. In our experiments, we letr1 = s1 = 0.5. Thus, we assign equal



20 ADAPTIVE FEATURE PURSUIT: ONLINE ADAPTATION OF FEATURES IN REINFORCEMENT LEARNING

Figure 23.1 A Single-Junction Road Network

weightage to both queue lengths and elapsed times. Further,we let r2 = 0.6 and

s2 = 0.4, respectively. Thus, queue lengths and elapsed times for lanes on the main

road are weighted more than those on the side roads. We let thediscount factor

γ = 0.9 in the experiments.

We consider two different road traffic networks: (a) a network with a single traffic

signal junction and (b) a corridor with two traffic signal junctions. The two networks

are shown in Figures 23.1 and 23.2, respectively. We implemented these network

settings and our algorithm on the green light district (GLD)open source software for

road traffic simulations [28].

We study the performance of our feature adaptation scheme using estimates of

E[‖ V µ,r
M ‖]. Recall that from Theorem 23.1, the estimatesE[‖ V µ,r

M − V µ ‖]

diminish with r. The value functionV µ, however, is not available, so we use the

fact that by the foregoing,E[‖ V µ,r
M ‖] will tend to increase. For estimatingE[‖
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Figure 23.2 A Corridor Network with Two Junctions

V µ,r
M ‖], we use the sample averages of the estimates of‖ V µ,r

M ‖. As mentioned

previously, we letV r
n = Φrθr

n denote thenth estimate of the value function when

the feature matrix isΦr. We obtain the aforementioned sample averages by running

the recursion

Zr
n+1 = (1 − a)Zr

n + a ‖ V r
n ‖,

where for any givenr ∈ {0, 1, . . . , R−1}, the above recursion is run forM iterations

i.e., with n ∈ {0, 1, . . . , M − 1}. Next, the value ofr is updated and the above

procedure repeated. Herea is a small step-size that we select to be 0.001. By abuse

of notation, we denoteZr
n asZm in these figures wherem denotes the number of

cycles or time instants (in absolute terms) i.e.,m ∈ {0, 1, . . . , RM − 1}, whenZm

is updated.

We call each group ofM cycles when the feature matrixΦr is held fixed for

somer, an episode. We conducted our experiments for the cases of single-junction
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Figure 23.4 Plot of Zm vs. m after 40,000 Cycles in the Case of Single-Junction Road
Network

and two-junction-corridor networks for a total of 150 episodes in each where each

episode comprised of 2,500 cycles. ThusM = 2500 andR = 150 in our experi-

ments.
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Table 23.1 Performance Improvement with Feature Adaptation for the
Single-Junction Road Network

# Cycle Zm Zm − ZM−1,
(m) (m ≥ M − 1)

2499 51042.23

74999 54003.00 2960.76

149999 54116.59 3074.36

224999 54260.28 3218.05

299999 54255.38 3213.15

374999 54274.72 3232.49

For the single-junction case, we show in Figure 23.3 the plotof Zm as a function

of m (the number of cycles). We observe that there is a significantimprovement after

the first episode which results in a steep jump in theZm value. In subsequent (r)

iterations when theΦr matrix is updated, the performance improvement continues,

though in smaller steps. The improvement in performance from feature adaptation

can be seen more clearly in Figure 23.4, when the values ofZm are plotted form ≥

40, 000. The value ofZm as well as the differenceZm − ZM−1 i.e., improvement

in ‘Zm performance’ in relation to its value obtained after the completion of the first

episode (i.e., with the originally selected feature matrix) is shown at the end of the

30th, 60th, 90th, 120th and 150th episodes respectively, inTable 23.1. As expected,

the values ofZm are seen to consistently increase here.

Next, for the case of the two-junction corridor road network, we show a similar

plot of Zm as a function ofm in Figure 23.5. Further, in Figure 23.6, we show the

same plot for cycles 40,000 onwards to show performance improvement resulting
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from feature adaptation. Similar observations as for the single-junction case hold in

the case of the two-junction corridor as well.
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Table 23.2 Performance Improvement with Feature Adaptation for the Two-Junction
Corridor Road Network

# Cycle Zm Zm − ZM−1

(m) (m ≥ M − 1)

2499 53480.65

74999 53834.04 353.39

149999 53985.54 504.89

224999 54166.69 686.04

299999 54167.99 687.34

374999 54207.78 727.13

Finally, as before, we show in Table 23.2, the values ofZm as well as of the

differenceZm − ZM−1 at the end of the 30th, 60th, 90th, 120th and 150th episodes

respectively. The values ofZm are again seen to consistently increase here as well.

23.6 CONCLUSIONS

We presented in this paper a novel online feature adaptationalgorithm. We observed

significant performance improvements on two different settings for a problem of

traffic signal control. We considered the problem of prediction here and applied our

feature adaptation scheme in conjunction with the temporaldifference learning algo-

rithm. As future work, one may consider the application of our algorithm together

with other schemes such as least squares temporal difference (LSTD) learning [12],

[11] and least squares policy evaluation (LSPE) [19], [6]. Moreover, one may apply

a similar scheme for the problem of control, for instance, inconjunction with the

actor-critic algorithms in [16] and [9].
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