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Abstract—Adaptive control of traffic lights is a key component
of any intelligent transportation system. Many real-time traffic
light control (TLC) algorithms are based on graded thresholds, be-
cause precise information about the traffic congestion in the road
network is hard to obtain in practice. For example, using thresh-
olds L1 and L2, we could mark the congestion level on a particular
lane as “low,” “medium,” or “high” based on whether the queue
length on the lane is below L1, between L1 and L2, or above L2,
respectively. However, the TLC algorithms that were proposed in
the literature incorporate fixed values for the thresholds, which, in
general, are not optimal for all traffic conditions. In this paper, we
present an algorithm based on stochastic optimization to tune the
thresholds that are associated with a TLC algorithm for optimal
performance. We also propose the following three novel TLC al-
gorithms: 1) a full-state Q-learning algorithm with state aggrega-
tion, 2) a Q-learning algorithm with function approximation that
involves an enhanced feature selection scheme, and 3) a priority-
based TLC scheme. All these algorithms are threshold based.
Next, we combine the threshold-tuning algorithm with the three
aforementioned algorithms. Such a combination results in several
interesting consequences. For example, in the case of Q-learning
with full-state representation, our threshold-tuning algorithm sug-
gests an optimal way of clustering states to reduce the cardinality
of the state space, and in the case of the Q-learning algorithm
with function approximation, our (threshold-tuning) algorithm
provides a novel feature adaptation scheme to obtain an “optimal”
selection of features. Our tuning algorithm is an incremental-
update online scheme with proven convergence to the optimal val-
ues of thresholds. Moreover, the additional computational effort
that is required because of the integration of the tuning scheme
in any of the graded-threshold-based TLC algorithms is minimal.
Simulation results show a significant gain in performance when
our threshold-tuning algorithm is used in conjunction with various
TLC algorithms compared to the original TLC algorithms without
tuning and with fixed thresholds.

Index Terms—Deterministic perturbation sequences, intelligent
transportation systems, simultaneous perturbation stochastic ap-
proximation (SPSA), stochastic optimization, threshold tuning,
traffic signal control.

I. INTRODUCTION

ADAPTIVE control of traffic lights forms an integral part
of the design of any intelligent transportation system.
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Information about the queue lengths on the lanes of the road
network is a necessary input for many adaptive traffic light con-
trol (TLC) algorithms. However, in practice, this information is
hard to obtain with precision, but instead, certain thresholds on
the queue lengths can be used to classify the traffic condition.
Thresholds may also be used on the elapsed time, i.e., the
amount of time since the signal has turned red on any lane. In
essence, the TLC algorithm could consider switching a lane to
green if either the queue length or the elapsed time exceeds
certain prescribed thresholds. Designing a TLC algorithm that
maximizes the traffic flow in the long term across various
junctions in a road network is a challenging problem. This
case is because of the variability in traffic patterns and the
lack of precise state information. Many times, we only have
a coarse knowledge of the level of congestion on a lane, such as
low, medium, or high. Such information can be better obtained
using graded feedback policies. For example, for some suitably
chosen threshold levels L1 and L2 for each lane with L1 < L2,
we could mark congestion as being in the low range if the queue
length on that lane is below L1. On the other hand, if the queue
length is between L1 and L2, congestion could be said to be in
the medium range, whereas if it is above L2, it could be inferred
to be high. In such (graded-threshold-based) policies, however,
the choice of the thresholds (such as L1 and L2) plays a critical
role, and one problem is to optimally select such thresholds.
Graded-threshold policies have been considered, for example,
in [1]. These policies, however, consider fixed values for the
thresholds. One problem of interest is to find optimal thresholds
for such classes of feedback policies.

We consider the problem of designing new TLC algorithms
with graded thresholds that are, however, optimally set. To
obtain optimal thresholds, we develop an algorithm that works
in conjunction with the given TLC algorithm and tunes the
thresholds to optimize a given cost objective. The problem is
shown to be equivalent to the problem of finding an optimal
feedback policy within a given class of parameterized feedback
policies, with the underlying parameter, in general, being a
vector of the various thresholds on which the policies depend.
In a stochastic dynamic setting as we consider, it is necessary
to design an online algorithm to tune the thresholds on queue
lengths and/or elapsed times and thereby tune the parameter
of the associated feedback policy. The threshold-tuning al-
gorithm should be easily implementable, have the necessary
convergence properties, and, most importantly, work for any
graded-threshold-based TLC algorithm and, in general, for any
parameterized class of policies.

In this paper, we design an efficient simultaneous-
perturbation stochastic-approximation (SPSA)-based online
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threshold-tuning algorithm that works with any graded-
threshold-based TLC algorithm, and we propose the following
three new TLC algorithms: 1) a variant of Q-learning with full-
state representation that incorporates a novel state aggregation
scheme, 2) a function-approximation-based Q-learning TLC
algorithm that enhances the scheme that was proposed in [1] by
incorporating a new feature selection procedure, and 3) a novel
priority-based algorithm. We study our threshold-tuning algo-
rithm in conjunction with these TLC algorithms. We describe
our contributions in the following paragraphs.

The SPSA-based online threshold-tuning algorithm that we
design here falls in the general category of simulation-based
optimization—a collection of methods that do not require
a priori knowledge or assumption on the traffic system dynam-
ics. Furthermore, our algorithm has the added advantage that it
is easily implementable, possesses the necessary convergence
properties, and works with any graded-threshold-based TLC
algorithm, regardless of the network and traffic conditions. In
particular, we incorporate the one-simulation variant of the
SPSA algorithm that uses Hadamard-matrix-based determinis-
tic perturbations based on [2] to tune the graded thresholds used
in the sign configuration policy. To the best of our knowledge,
we are the first to explore threshold tuning for different classes
of graded TLC algorithms. We study the empirical performance
of our threshold-tuning algorithm when combined with the
aforementioned three new threshold-based TLC algorithms.
Based on the simulation experiments, we observe that our
tuning algorithm is easily implementable over all road network
settings and rapidly converges to the optimal thresholds in
any graded-threshold-based TLC algorithm. Furthermore, the
additional computational effort that is required in finding the
optimal thresholds over algorithms with fixed thresholds is
observed to be small.

Among the three TLC algorithms that we propose, the
Q-learning-based TLC algorithm (in the full-state case) incor-
porates a novel state aggregation technique to handle large
state spaces than regular Q-learning (with full-state represen-
tations). The combination of Q-learning-based TLC with state
aggregation is shown to result in a significant reduction in the
cardinality of the state space, which results in a computational
advantage over regular Q-learning (i.e., without state aggrega-
tion). Furthermore, we develop a Q-learning-based TLC algo-
rithm with function approximation along the lines of [1], but
with an important difference in the feature selection procedure.
The feature selection procedure that we propose intelligently
combines the queue lengths and elapsed times with the feasible
sign configurations to arrive at the state–action features. This is
unlike the features that were used in [1], in which the state and
the action components of the features are almost independent.
By obtaining features in a novel manner whereby the state
and action components cannot be separated, we observed that
the resulting Q-learning algorithm with function approximation
significantly outperforms the algorithm that was proposed in
[1]. The priority-based TLC (PTLC) that we propose assigns
priorities to the various sign configurations based on graded
thresholds.

The combination of our threshold-tuning algorithm with the
other aforementioned TLC algorithms results in several inter-

esting consequences. For example, in the case of Q-learning
with full-state representation, our threshold-tuning algorithm
results in finding an optimal way of clustering states to re-
duce the cardinality of the state space, and in the case of the
Q-learning algorithm with function approximation, our
threshold-tuning algorithm results in tuning online the associ-
ated state representation features and thereby obtains the opti-
mal features within a parameterized class of features (that are
parameterized by the threshold parameters). In the context of
reinforcement learning (RL), developing algorithms for feature
adaptation is currently a hot area of research in itself.

II. LITERATURE SURVEY

We now review the literature in the following two different
areas of related work: 1) techniques that pertain to traffic
signal control and 2) developments in stochastic optimization
approaches.

A. Traffic Signal Control

We briefly review some TLC strategies that have been
proposed in the literature. See [3] and [4] for a detailed
discussion of relevant traffic signal control literature. In [5], an
offline traffic signal control technique where the signal timings
are generated using a static optimizer has been proposed. One
popular version of this system that has been widely adapted is
the Split-Cycle Offset Optimization Technique (SCOOT) [6]: a
traffic-responsive signal control scheme that uses traffic volume
and occupancy as input. The Sydney Coordinated Adaptive
Traffic System (SCATS) [7] is another well-deployed scheme
that picks one of the precalculated controls based on the traffic
state. Several online TLC algorithms that adapt in real time
have also been proposed. For example, genetic algorithms [8],
neural-network-based algorithms [9]–[11], algorithms that are
based on cellular automata [12], stochastic control [13], and
dynamic optimization [14]–[16], and RL [1], [17] are all online
schemes. In [14]–[16], a model of the system is assumed, and
the optimal signal timings are obtained by solving a dynamic
optimization problem in real time. SPSA gradient estimates
have also been used in the neural-network-based approaches in
[9] and [10] to optimize traffic signal timings.

An interesting account of the evolution of traffic signals, i.e.,
devices for traffic control, is provided in [18]. In [19], an SPSA-
like algorithm that incorporates linear function approximation,
in addition, has been proposed for the adaptive optimization of
control systems and applied to tune the split module parameters
in a traffic-responsive control strategy. Random perturbations
are used in the algorithm that was proposed in [19], where
the authors note that the basic SPSA algorithm with random
perturbations did not perform well. On the other hand, in
this paper, we use one-simulation SPSA with deterministic
perturbations based on certain Hadamard matrices, and this
choice ensures convergence and good empirical performance
of the scheme. In [20], the algorithm that was based on [19] has
been combined with neural networks. The resulting algorithm
has been studied in the context of optimizing the split and cycle
times of traffic control strategy through simulation in [21]. The
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adaptive-control-based TLC algorithm that was proposed in
[13] incorporates a Markov decision process (MDP) formula-
tion. However, this approach requires a precise model of the
system, which, in general, is hard to obtain in realistic settings.
In [22], a method for automatic red light runner detection on
a video is presented. In [23], a three-tier open TLC model
is proposed to smooth vehicles’ travel to minimize the usage
of fuel. An RL-based TLC algorithm that was proposed in
[17] uses full-state representations with a high computational
complexity. This algorithm has been studied only for an isolated
traffic junction scenario in [17]. The RL-based TLC algorithm
in [1] incorporates function approximation together with certain
fixed graded-feedback policies and is shown to perform well
over many road network scenarios, with as many as eight or
nine junctions involving nearly 1090 states. Unlike RL algo-
rithms that are based on full-state representations [17], the
computational effort that is required by the algorithm in [1]
remains reasonable, even for large-scale networks, because of
the use of function approximation. RL techniques have also
been applied in other applications, for example, in [24] for high-
speed road following for high-curvature roads.

B. Stochastic Optimization

One popular approach for simulation-based parameter opti-
mization is SPSA, as proposed in [25]. SPSA is an efficient
gradient search technique that aims at finding a local mini-
mum of a performance objective. The regular SPSA algorithm
randomly perturbs the parameter vector using independent and
identically distributed, symmetric, zero-mean random variables
and has the critical advantage that it needs only two samples of
the objective function for any N -D parameter. A variant of the
SPSA algorithm that uses one simulation was proposed in [26].
Unlike its two-simulation counterpart, the algorithm in [26]
does not work well in practice. In [2], several variants of the
SPSA algorithm that work with deterministic perturbations (in
place of randomized) were developed, which show performance
improvements over their randomized perturbation counterparts.
The perturbation variables are based on either lexicographic or
Hadamard matrix sequences. In particular, the one-simulation
variant of the SPSA algorithm that is based on Hadamard
matrices has been found to perform significantly better than
the one-simulation random-perturbation algorithm presented
in [26]. A Newton-based SPSA algorithm that requires four
system simulations with Bernoulli random perturbations was
proposed in [27]. In [28], three SPSA-based estimates of
the Hessian that require three, two, and one system simula-
tion(s), respectively, were proposed. In [29], certain smoothed
functional Newton algorithms that incorporate Gaussian-
based perturbations were proposed. It is, however, the case
that Newton-based algorithms, although more accurate than
gradient-based schemes, require significantly higher compu-
tational effort that results from projecting a Hessian update
at each iteration to the set of positive definite and symmet-
ric matrices and inverting the projected Hessian after each
update. Hence, we present in this paper the application of
one-simulation deterministic perturbation SPSA for tuning the
threshold parameters.

C. Organization

The rest of this paper is organized as follows. In Section III,
we describe in detail the problem framework. In Section IV,
we present our threshold-tuning algorithm. In Section V, we
present our algorithms for traffic signal control and combine
them with the threshold-tuning algorithm. In Section VI, we
discuss the implementation of the various TLC schemes, where
our algorithm was used to find the optimal thresholds in each
scheme, and present the performance simulation results. Fi-
nally, in Section VII, we provide the concluding remarks.

III. PROBLEM FORMULATION

We study in this paper the problem of maximizing traffic flow
through the adaptive control of traffic lights at intersections.
Our solution methodology consists of the following two impor-
tant components: 1) a threshold-based sign configuration policy
obtained from a TLC algorithm for a fixed set of thresholds
and 2) another algorithm that operates on top of the TLC
algorithm itself for tuning the thresholds. A sign configuration
here refers to all the signals that are associated with a phase,
i.e., signals that can simultaneously be switched to green. The
TLC algorithms that we consider indicate when to switch a
sign configuration and are all based on graded thresholds.
The threshold-tuning algorithm, which is common to all the
schemes, tunes the graded feedback policy to find the optimal
parameters (thresholds) and does not indicate how we can
switch the sign configurations, a task that is performed by the
particular TLC algorithm used. Apart from designing efficient
TLC algorithms, one important problem that we address is
to find the “optimal” set of parameters to use for a given
TLC algorithm and that gives the optimal feedback policies
within the given parameterized class of policies. To the best
of our knowledge, this problem has not been addressed in the
literature.

Each TLC algorithm that we consider uses as input the queue
lengths along the individual lanes that lead to the intersection
and the time elapsed since the last signal light has switched
over on each lane. The queue length input is used to minimize
(depending on the objective) the average junction waiting times
of the road users, whereas the elapsed-time input is used to
ensure fairness, i.e., no lane is allowed to stay green for a long
time at the cost of other lanes.

We consider a centralized control setting where control de-
cisions are made by a centralized controller that receives the
state information from the various lanes and makes decision on
which traffic lights to switch green during a cycle. This decision
is then relayed back to the individual junctions. We assume no
propagation and feedback delays for simplicity. The elapsed-
time counter for a lane with green signal stays at zero until the
time the signal turns red. For a road network with m junctions
and a total of K signaled lanes across junctions, the state at time
n is the vector

sn = (q1(n), . . . , qK(n), t1(n), . . . , tK(n)) (1)

where qi(n) and ti(n) are, respectively, the queue length and
the elapsed time on lane i at time n. The aforementioned state
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formulation is valid for all the TLC algorithms, except for the
Q-learning-based TLC that incorporates state aggregation. The
details of the state aggregation and the formulation of the state
parameterized by thresholds for this algorithm are given in
Section V-A.

The action an that is chosen by the central controller at
time n is the sign configuration at each of the m junctions of
the road network and has the form an = (a1(n), . . . , am(n)),
where ai(n) is the sign configuration at junction i in time slot
n. We assume here that there are a total of m junctions in the
road network.

The cost function is designed to maximize traffic flow and,
at the same time, ensure fairness so that no lane suffers from
being red for a long duration. This is achieved by letting the
cost function be the weighted sum of queue lengths and elapsed
times on the lanes of the road network, with the weights suitably
chosen to incorporate prioritization of traffic. For example,
traffic on main roads is given a higher priority than on side
roads. Let Ip denote the set of indices of prioritized lanes, i.e.,
whose traffic is given higher priority. We let the cost k(sn, an)
have the form

k(sn, an) = α1 ∗

⎛⎝∑
i∈Ip

α2 ∗ qi(n) +
∑
i/∈Ip

β2 ∗ qi(n)

⎞⎠
+ β1 ∗

⎛⎝∑
i∈Ip

α2 ∗ ti(n) +
∑
i/∈Ip

β2 ∗ ti(n)

⎞⎠ (2)

where αi, βi ≥ 0, and αi + βi = 1, i = 1, 2. Furthermore,
α2 > β2. Thus, lanes in Ip are assigned a higher cost, and
hence, a cost-optimizing strategy must assign higher priority to
these lanes to minimize the overall cost. Note that, based on the
way that it is defined [cf., (2)], k(sn, an) explicitly depends on
sn and not on an. However, it indirectly depends on an, because
a change in the sign configuration has an impact on the queue
lengths and elapsed times on the various lanes.

The sign configuration policy that governs the state evolution
is based on given queue-length thresholds L1 and L2 and
elapsed-time threshold T1. We want to find an optimal value
for the parameter vector θ that minimizes the long-run average
cost [cf., (3)], where θ corresponds to the vector (L1, L2, T1)

T

for all the TLC algorithms that we propose in Section V.
We let the parameter vector θ take values in a com-

pact set C
Δ
= [Lmin, Lmax]× [Lmin, Lmax]× [Tmin, Tmax] ⊂

R3 by making use of the projection operator π, as will be
defined later, where Lmin, Lmax, Tmin, and Tmax are cer-
tain prescribed thresholds. The objective is to find a θ that
minimizes

J(θ) = lim
l→∞

1
l

l−1∑
j=0

k(sj , aj). (3)

The actions aj are assumed to be governed by one of the
policies that we present as follows, which, in turn, will be
parameterized by the threshold parameter θ. Although it is
desirable to find a θ∗ ∈ C that minimizes J(θ), it is, in general,
difficult to achieve a global minimum. We therefore use a local

optimization method, for which we need to evaluate ∇J(θ) ≡
(∇1J(θ),∇2J(θ),∇3J(θ))

T for all the algorithms.
We make the following assumption on the function J(·).
Assumption (A1): The long-run average cost J(θ) is contin-

uously differentiable with a bounded second derivative.
Note that (A1) is a technical requirement that is used to push

through a Taylor’s argument in the convergence analysis (see
Section VII). In the case of finite-state parameterized Markov
chains, we can show, using a similar argument as given in [30],
that the parameterized stationary distribution is continuously
differentiable if the parameterized transition probabilities are.

The threshold-tuning algorithm that we present in the next
section finds the optimum parameter θ using only one sim-
ulation trajectory, whereas the TLC schemes that we present
estimate the optimal policy for a given set of thresholds. Hence,
in combination with the threshold-tuning algorithm, the TLC
algorithms that we propose are shown to exhibit significant
performance improvements.

IV. THRESHOLD-TUNING ALGORITHM

A stochastic iterative algorithm for finding the optimal
thresholds in the case of a long-run average cost objective
would require two nested loops as follows.

1) The inner loop estimates the long-run average cost and
also picks actions from the underlying TLC algorithm.

2) The outer loop updates θ along a negative descent direc-
tion using an estimate obtained using the outcome of the
inner loop procedure.

The aforementioned procedure that involves two loops has
to iteratively be performed until the parameter θ converges to
a local minimum. However, such a procedure would typically
be computationally expensive, considering that one step of
the outer loop, i.e., updating θ in the direction of −∇θJ(θ),
happens only after the convergence of the corresponding inner
loop procedure. Using a multiple-time-scale stochastic approx-
imation procedure [31, Ch. 6], we circumvent this problem,
because both the inner and outer loops can run in tandem. The
resulting scheme is shown to converge to the optimal solution
for the long-run average cost objective (3).

The threshold-tuning algorithm estimates the gradient of
the objective function ∇θJ(θ) using a one-sided SPSA-based
estimate, i.e.,

∇θJ(θ) ≈
(
J(θ + δ�)

δ

)
�−1 (4)

which incorporates a Hadamard-matrix-based deterministic
construction for the perturbations �. One-simulation SPSA
gradient estimates based on randomized perturbations were
proposed in [26], but these are shown to suffer from a
large bias and, hence, do not give good performance. In [2],
a one-simulation SPSA algorithm that incorporates certain
Hadamard-matrix-based deterministic perturbations was pro-
posed. The algorithm that was based on [2] was shown to yield
good performance and has significantly lower bias compared
with the algorithm in [26].

Fig. 1 illustrates the operation of the threshold-tuning al-
gorithm. In essence, it is a closed-loop procedure where the
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Fig. 1. Operation of the threshold-tuning algorithm.

system is simulated for a perturbed parameter value (θ + δ�)
and where the average cost estimates that were obtained
through simulation are used to update θ in the negative gradient
descent direction using the estimate (4).

In what follows, we use ŝl, l ≥ 0 to denote the state-valued
process governed by the perturbed parameter sequence θ̂l, l ≥
0. This process and the corresponding sequence of actions âl,
l ≥ 0 help in performing the parameter updates (5), shown
below. The threshold-tuning algorithm is given as follows:

L1(n+ 1) =π1

(
L1(n)− a(n)

(
Z̃(nL)

δ�1(n)

))

L2(n+ 1) =π1

(
L2(n)− a(n)

(
Z̃(nL)

δ�2(n)

))

T1(n+ 1) =π2

(
T1(n)− a(n)

(
Z̃(nL)

δ�3(n)

))
. (5)

The quantities used in (5) are the following:

• L1(n), L2(n), and T1(n) denote the nth updates of the
thresholds L1, L2, and T1, respectively.

• Z̃(nL) represents the cost function averaging term ob-
tained by accumulating the single-stage cost over L cycles
and is specific to the TLC algorithm used to obtain the
sign configuration policy on the faster time scale. These
updates will be explained in the TLC algorithms in the
next section.

• L ≥ 1 is a fixed parameter that controls the rate of update
of θ in relation to that of Z̃. This parameter allows for
the accumulation of updates to Z̃ for L iterations in be-
tween two successive θ updates. It is usually observed that
allowing L to be greater than 1 improves the algorithm’s
performance, although convergence can be proven for any
value of L, including 1.

• δ > 0 is a given small constant, and �(n) = (�1(n),
�2(n),�3(n))

T is a vector of ±1-valued random
variables �i(n), i = 1, 2, 3. The �i(n) themselves
correspond to perturbation directions for the three
parameter components. For any n, �(n) is obtained
from a Hadamard matrix construction as described in
Section IV-A.

• π : R3 → C is the projection operator defined by

π(θ)
Δ
= (π1(θ1), π1(θ2), π2(θ3))

T , θ ∈ R3. Here, for any

x ∈ R, π1(x)
Δ
= min(max(Lmin, x), Lmax), and π2(x)

Δ
=

min(max(Tmin, x), Tmax), respectively.

Remark 1: Our threshold-tuning algorithm is different from
the algorithms in [19] and [20] in many ways. An expected
cost objective is considered in the latter approach, and the
objective function is parameterized, in the spirit of RL, using a
linear function approximation architecture, with the parameter
being tuned in SPSA-like fashion, whereas in our case, we
consider the long-run average cost objective (3). Furthermore,
we directly consider the objective function without resorting to
parameterized approximations of the cost, and using SPSA with
deterministic perturbations, we ensure convergence to a locally
optimal point of the objective. Note that our tuning algorithm
requires only one simulation for estimating the objective func-
tion, unlike the algorithms that were proposed in [19] and [20].
In addition, we provide three new TLC algorithms, all based on
graded thresholds, and combine our threshold-tuning algorithm
with these TLC algorithms.

The complete algorithm is described as follows.

Algorithm 1: Threshold-tuning algorithm.

Input:

• R, a large positive integer; θ0, initial parameter vector;
δ > 0; �;

• UpdateTheta(), the stochastic update rule discussed in (5)
• Simulate(θ) → X: The function that performs one time

step of the road traffic simulation and output the single-
stage cost value k(ŝn, ·) [cf., (2)].

• UpdateAverageCost(): The function that updates the aver-
age cost estimate Z̃(·) used in (5) and is specific to the
TLC-algorithm.

• UpdateTheta(): The function that updates the threshold
parameter θ according to (5).

Output: θ∗ Δ
= θR.

θ ← θ0, n ← 1
loop
X̂ ← Simulate(θ + δΔ)
UpdateAverageCost()
if n%L = 0 then

UpdateTheta()
end if
n ← n+ 1
if n = R then

Terminate with θ.
end if

end loop

We make the following assumption on the step sizes a(n)
and b(n).

Assumption (A2): We have

∑
n

a(n) =
∑
n

b(n) = ∞,
∑
n

(
a2(n) + b2(n)

)
> ∞

and lim
n→∞

a(n)

b(n)
= 0.
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The first two requirements in (A2) are standard in stochastic
approximation algorithms. In particular, the first requirement
ensures that the recursions do not prematurely converge,
whereas the second requirement aids in canceling the effect of
stochastic noise. As described, the third requirement in (A2)
essentially gives rise to the desired separation of time scales
between the recursion (5) that is common to all algorithms and
the recursions (8), (11), and (12), shown below, of the various
TLC algorithms that we describe as follows. As we do in our
experiments for all algorithms, we can select the following step
sizes a(n) and b(n), n ≥ 0 that satisfy the requirements in (A2):

a(0) = â, b(0) = b̂, a(n) = â/n, b(n) = b̂/nα, n ≥ 1

with (1/2) < α < 1, 0 < â, and b̂ < ∞.

A. Hadamard-Matrix-Based Construction for {�(n)}
An m×m(m ≥ 2) matrix H is called a Hadamard matrix

of order m if its entries belong to {1,−1} and HTH = mIm,
where Im denotes the m×m identity matrix. Furthermore, a
Hadamard matrix is said to be normalized if all the elements of
its first row and column are 1. A simple and systematic way of
constructing normalized Hadamard matrices of order m = 2k

is described as follows.
For k = 1, we have

H2 =

[
1 1
1 −1

]
and for general k > 1, we have

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
.

Let P = 2
log2(N+1)�, where, as aforementioned, N is the
parameter dimension. This implies P ≥ N + 1. Now, construct
a normalized Hadamard matrix HP of order P using the afore-
mentioned procedure. Let h(1), . . . , h(N) be any N columns
other than the first column of HP . The first column is not
considered, because all elements in the first column are 1,
whereas all the other columns have an equal number of +1
and −1 elements. The latter property aids in canceling the
bias terms. Form a new matrix H̃P of order P ×N , with
h(1), . . . , h(N) being its columns. Let �̃(k), k = 1, . . . , P
denote the rows of H̃P . The perturbation sequence {�(m)}
is now generated by cycling through the rows of H̃P , i.e.,

�(n) = �̃(n mod P + 1)∀n ≥ 0.

Having described the problem framework and the threshold-
tuning algorithm, we now present three TLC algorithms, each
corresponding to a given class of graded-threshold-based sign
configuration policies with given thresholds. The thresholds L1,
L2, and T1 are held fixed and used in various ways (as we
explain in the next section) in the three algorithms. When com-
bined with the threshold-tuning algorithm (5), these algorithms
represent the most effective TLC strategies in their respective
classes. The first two algorithms that we present in the fol-
lowing section are based on Q-learning and incorporate state

aggregation and function approximation, respectively, whereas
the last algorithm is a priority-based scheme.

V. TRAFFIC LIGHT CONTROL ALGORITHMS

A. Q-Learning Traffic Light Control With State Aggregation
(QTLC-SA)

Q-learning is an important RL algorithm that has the follow-
ing incremental update rule:

Qn+1(i, a) = Qn(i, a) + a(n)

×
(
k(i, a) + γ min

b∈A(j)
Qn(j, b)−Qn(i, a)

)
(6)

for all feasible tuples (i, a) of states and actions. Here, j is the
next state after state i that is observed through simulation and
follows the distribution p(i, ., a). In addition, a (respectively,
b) is a feasible action in state i (respectively, j), and 0 < γ <
1 is a given discount factor. Traditional methods for solving
the MDP (see [32]) formulated in the previous section would
require the specification of p(i, ., a), whereas the Q-learning
solution (6) works with only simulation-based sample estimates
of the single-stage cost function (2) to obtain the optimal sign
configuration policy, and explicit knowledge of the transition
probabilities p(i, ·, a) is not required. Quantities Qn(i, a) are
estimates of the Q-value when the feasible state–action tuple is
(i, a), i.e., a ∈ A(i), i ∈ S . Q0(i, a) can arbitrarily be initial-
ized, and a simple choice is to set them all to zero. Note that
recursion (6) is run for all feasible state–action tuples (i, a).

An MDP framework [32] requires the identification of states,
actions, and costs. Although the actions and single-stage cost
function were identified in Section III, the following state for-
mulation in our algorithm is different and uses state aggregation
to tackle the curse of dimensionality. Consider the process
{s′n(θ), n ≥ 0}, parameterized by θ = (L1, L2, T1)

T , which is
defined as follows:

s′n(θ) = (q′1(n), . . . , q
′
K(n), t′1(n), . . . , t

′
K(n)) (7)

where

q′i(n) =

⎧⎨⎩
0, if qi(n) < L1

0.5, if L1 ≤ qi(n) ≤ L2

1, if qi(n) > L2

t′i(n) =

{
0, if ti(n) ≤ T1

1, if ti(n) > T1.

Note that, as aforementioned, qi(n) and ti(n) denote the wait-
ing queue lengths and elapsed times that correspond to the
lane i at time n, respectively. Thus, q′i(n) and t′i(n) serve
as proxies for qi(n) and ti(n), i = 1, . . . ,K, respectively. By
only allowing q′i(n) to take three possible values and t′i(n) to
take two values, depending on qi(n), ti(n), and θ, we cluster
together states sn into s′n(θ), n ≥ 0 to make computation
more manageable. The problem of the curse of dimensionality
associated with large state spaces is the primary reason that
regular Q-learning with full-state representations [cf., recursion
(6)] is not implementable in the case of large networks; see [1].
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The Q-learning algorithm (6) when applied to our setting with
state aggregation will be referred to as the QTLC-SA algorithm.

1) QTLC-SA-TT: The Q-learning traffic light control with
state aggregation with threshold tuning (QTLC-SA-TT) algo-
rithm is a two-time-scale stochastic approximation algorithm
that updates θ on the slower time scale and learns the optimal
sign configuration policy (parameterized by θ) on the faster
time scale. The update of the threshold parameters is done using
the threshold-tuning algorithm (5), whereas the cost function
averaging (required for the threshold-tuning algorithm) and
update of the Q-learning algorithm are performed as follows.
For m = nL, . . . , (n+ 1)L− 1, we have

Z̃(m+ 1) = Z̃(m) + b(n)
(
k (ŝm(θ), ãm)− Z̃(m)

)
(8a)

Qm+1 (ŝ(θ), â) =Qm (ŝ(θ), â) + b(n)

×
(
k(ŝ, â) + γ min

b∈A(j(θ))
Qm

(
j(θ), b

)

−Qm (ŝ(θ), â)

)
(8b)

where the following conditions hold.

• {ŝl(θ)} denotes the aggregated state-valued process that
is governed by {θ̂l}, where θ̂l = θn + δ�(n) for n =
[(l/L)], with a given L ≥ 1.

• Although the Q-function update [cf., (8b)] is performed
for all feasible state action tuples (where states are now
aggregated states), the action ãm in the argument of the
single-stage cost k(ŝm(θ), ·) in (8a) is chosen based on
the policy that is suggested by the Q-value update.

• The perturbations �(n) are generated using Hadamard
matrices, as outlined in Section IV-A.

We make the following assumption on the underlying process
when the actions are obtained from the QTLC-SA algorithm.

2) Assumption (A3):

A) The basic underlying process {ŝn(θ), n ≥ 1} is an MDP
that is parameterized by θ.

B) The Markov chain {ŝn(θ), n ≥ 1} under a given param-
eter θ ∈ C and any fixed stationary sign configuration
policy is ergodic.

Assumption (A3) ensures, in particular, that the long-run
average cost in (3) is well defined for any given θ ∈ C under
any stationary sign configuration policy.

B. Q-Learning With Function Approximation With a Novel
Feature Selection Scheme (QTLC-FA-NFS)

It turns out that, with QTLC-SA, the curse of dimensionality
using state aggregation cannot fully be controlled for large
networks with high-dimensional states, because the cardinality
of the aggregated state space significantly increases with the
dimension of the states. To alleviate the curse of dimensionality
problem, the use of function approximation has been advocated
in [1], and the QTLC-FA algorithm that was developed therein

is a computationally efficient TLC algorithm that is based on
Q-learning. However, the state–action features that were used
in [1] do not incorporate clear dependence between states and
actions. We further improve the performance of the QTLC-
FA algorithm proposed in [1] by incorporating a novel feature
selection scheme that incorporates dependence between states
and actions and assigns priorities to various state–action com-
binations in the features.

In a function approximation setting, corresponding to every
feasible state–action tuple, a feature vector has to be specified.
The inputs for the feature selection scheme would be the broad
estimates of congestion levels and elapsed times on the lanes
of the road network. In [1], the feature vector contained a bit
each for the congestion estimate, the elapsed-time estimate, and
the sign configuration portion, respectively, for each lane of the
road network. Although each of these attributes is important,
the approximation architecture used in [1] did not take into
account the dependence between features. In the novel feature
selection scheme that we propose, we incorporate dependence
between the state and the action features while using graded
thresholds. Another advantage of our methodology is that the
dimension of the feature vector is now reduced by more than
half, compared with the scheme in [1]. Numerical experiments
show that this new choice of features significantly outperforms
the one used in [1]. Various aspects of the Q-learning TLC
algorithm that incorporates function approximation with the
new feature selection scheme are now described.

In the following algorithm, a state–action feature, denoted by
σi,a, is associated with each feasible state–action tuple (i, a).
The Q-function is then approximated as

Q(i, a) ≈ ωTσi,a. (9)

Let sn and sn+1 denote the states at instants n and n+ 1, re-
spectively, and ωn be the estimate of the parameter ω at instant
n. The Q-learning algorithm with function approximation has
the following update rule:

ωn+1 = ωn + b(n)σsn,an

×
(
k(sn, an) + γ min

v∈A(sn+1)
ωT
n σsn+1,v − ωT

n σsn,an

)
(10)

where ω0 is arbitrarily set. In (10), the action an is chosen in
state sn according to an = argminv∈A(sn) ω

T
n σsn,v , whereas

the features are

σsn,an
= (σ1(n), . . . , σK(n))T

where the scheme for the selection of the feature value σi(n)
that corresponds to lane i when action a is chosen is explained
in Table I.

The feature selection scheme is graded and assigns a value
for each lane based on whether the queue length on the lane
is below L1, between L1 and L2, or above L2, whether the
elapsed time is below T1 or above it, as well as whether the
sign configuration indicates a red or green light for the lane.
For example, if both the queue length and the elapsed time are
above the “highest” threshold level for the lane, then an action
of GREEN would result in a feature value of 0, and an action
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TABLE I
FEATURE SELECTION (σi(n)) SCHEME FOR LANE i

of RED would result in the value 1. In essence, this choice
indicates that the TLC algorithm should attempt to switch this
lane to green, because regardless of the value of the weight
vector, the Q-value in such a case would be 0. By a similar
argument, if both the queue length and the elapsed time are
below the “lowest” threshold level for the lane, then the feature
value chosen is just the opposite, i.e., 0 for RED and 1 for
GREEN, implying that it is better to keep this lane red. The
feature values that correspond to other decision choices are,
again, suitably graded. It is clear that the assignment of feature
values here takes into account the dependence between states
and actions, which is unlike [1], where such dependence was
not incorporated.

Although the cardinality of the state–action space may be so
high such that storing or updating Q-values for each (s, a)-tuple
may be impossible, the aforementioned feature-based algorithm
estimates Q-values using the parameterization (9), making its
implementation feasible, even on large road networks, because
the parameter ωn has the same dimension as that of σsn,an

.
The Q-learning with function approximation algorithm with the
update rule (9) and our novel feature selection scheme will be
referred to as the QTLC-FA-NFS algorithm.

1) QTLC-FA-NFS-TT: As with QTLC-SA-TT, the combi-
nation of QTLC-FA-NFS with the threshold-tuning algorithm
(5) gives the Q-learning with function approximation with a
novel feature selection scheme with threshold tuning (QTLC-
FA-NFS-TT) algorithm. The recursions on the faster time scale
in the case of the QTLC-FA-NFS-TT algorithm are given as
follows. Let {s̃n, n ≥ 0} denote a state-valued process that
depends on both the tunable policy and the tunable parameter
θ̃l, l ≥ 0, where θ̃l = θn + δ�(n) for n = [(l/L)] and updates
of θn ≡ (L1(n), L2(n), T1(n))

T are governed according to (5).
For m = nL, . . . , (n+ 1)L− 1, we have

Z̃(m+ 1) = Z̃(m) + b(n)
(
k(s̃m, âm)− Z̃(m)

)
(11a)

ωm+1 =ωm + b(n)σs̃m,âm

×
(
k(s̃m, âm) + γ min

v∈A(s̃m+1)
ωT
mσs̃m+1,v

− ωT
mσs̃m,âm

)
. (11b)

The action âm in (11a) and (11b) is chosen to be the one that
minimizes ωT

mσs̃m,v over all v ∈ A(s̃m).
We make the following assumption here.

TABLE II
PRIORITY ASSIGNMENT FOR EACH LANE IN THE TLC POLICY

2) Assumption (A4):

A) For any given θ ∈ C, the basic underlying process
{sn, n ≥ 1} is an MDP.

B) For any given policy and parameter θ ∈ C, the process
{sn, n ≥ 1} is ergodic Markov.

C. PTLC

The sign configuration policy here is a graded threshold-
based policy that assigns different priorities to different policy
levels. The thresholds here are on the queue lengths (L1 and L2)
and elapsed times, because the last switchover of lights to red
(T1) on individual lanes. The cost that is assigned to each lane is
decided based on whether the queue length on that lane is below
L1, between L1 and L2, or above L2 at any instant and also on
whether the elapsed time is below or above T1. For example,
if both the queue length and the elapsed time are above the
“highest” threshold levels (L2 and T1, respectively) on a given
lane, then the policy assigns the highest priority value (of 6)
to that lane. The priority assignment for any lane i of the road
network based on the queue length qi and elapsed time ti is
shown in Table II. The policy then selects the sign configuration
with the maximum (over all feasible sign configurations) sum
of lane priority values. In essence, the TLC algorithm flushes
the traffic on lanes with long waiting queues while also giving
higher priority to lanes that have been waiting on a red signal
for a long time. This approach helps combine efficiency with
fairness.

1) PTLC-TT: Similar to the previous TLC algorithms, we
combine the threshold-tuning algorithm (5) with PTLC to ob-
tain the priority-based traffic light control with threshold tuning
(PTLC-TT) algorithm. The state-valued process {ŝn, n ≥ 0}
in this case under the aforementioned priority-based policy
depends on the tunable parameter sequence, θ̂l = θn + δ�(n),
n ≥ 0, where θn ≡ (L1(n), L2(n), T1(n))

T , n ≥ 0 are up-
dated according to (5). The faster time-scale recursions here are
given as follows. For m = nL, . . . , (n+ 1)L− 1, we have

Z̃(m+ 1) = Z̃(m) + b(n)
(
k(ŝm, âm)− Z̃(m)

)
. (12)

The aforementioned action âm is selected in state ŝm based
on the aforementioned priority assignment policy, i.e., select the
sign configuration with the maximum sum of priority values
(where the maximum is over all feasible sign configurations)
and switch the lanes in the chosen sign configuration to green.
We now make the following assumption.
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2) Assumption (A5):

A) The basic underlying process {ŝn, n ≥ 0} is a parame-
terized MDP.

B) For any given θ ∈ C and the specified priority-based
policy, {ŝn, n ≥ 0} is ergodic Markov.

D. Convergence Result

Let π̄(x) = (π̄1(x1), π̄1(x2), π̄2(x3))
T for any x = (x1, x2,

x3)
T ∈ R3. Define now the operators π̄1 and π̄2 as follows:

π̄1 (v(x)) = lim
η→0

(
π1 (x+ ηv(x))− x

η

)

π̄2 (w(x)) = lim
η→0

(
π2 (x+ ηw(x))x

η

)
(13)

for any continuous functions v : [Lmin, Lmax] → R and w :
[Tmin, Tmax] → R, respectively. The limits in (13) exist and
are unique, because [Lmin, Lmax] and [Tmin, Tmax] are con-
vex sets. Based on the definition, π̄1(v(x)) = v(x) (respec-
tively, π̄2(w(y)) = w(y)) if x ∈ (Lmin, Lmax) (respectively,
y ∈ (Tmin, Tmax).

Consider the following ordinary differential equation (ODE):

θ̇(t) = π̄ (−∇J (θ(t))) . (14)

Let R ⊂ I = {θ ∈ C|∇J(θ) = 0} denote the set of stable fixed
points of (14). Note that I denotes the set of all fixed points of
(14) that would include not only stable equilibriums but also
unstable equilibriums such as local maxima and saddle points.
The set of stable equilibriums (i.e., the local minima) is, in

general, a subset of I . For η > 0, let Rη Δ
= {θ ∈ C|‖θ − θ0‖ <

η for some θ0 ∈ R} denote the set of points that are within an
η-neighborhood of R.

Theorem 1: Given η > 0, there exists δ0 > 0 such that, for
all δ ∈ (0, δ0), the recursions θ(n) almost surely converge to
Rη.

The proof of the aforementioned theorem is given in the
Appendix.

VI. SIMULATION EXPERIMENTS

We now provide numerical results to illustrate the perfor-
mance of the various threshold-tuning TLC algorithms. For the
purpose of traffic simulation and performance comparison of
the various graded-threshold-based TLC algorithms, we used
the Green Light District (GLD) traffic simulation software [33].
The TLC algorithms were compared using the performance
metrics of average junction waiting time and the total number
of road users who reached their destination as functions of
the number of cycles. We now recall the QTLC-FA algorithm
proposed in [1] and describe its tuning variant Q-learning with
function approximation and threshold tuning (QTLC-FA-TT),
which we also implemented for comparison.

A. QTLC-FA-TT

The sign configuration policy here is based on the QTLC-FA
TLC algorithm in [1]. The function approximation architecture
is similar to that used in the QTLC-FA-NFS algorithm (see
Section V-B). The difference between QTLC-FA and QTLC-
FA-NFS lies in the feature selection procedure. The features in
QTLC-FA are chosen as follows:

σsn,an
=

(
σq1(n), . . . , σqK(n), σt1(n), . . . , σtK(n)

σa1(n), . . . , σam(n)

)T
(15)

where

σqi(n) =

⎧⎨⎩
0, if qi(n) < L1

0.5, if L1 ≤ qi(n) ≤ L2

1, if qi(n) > L2

σti(n) =

{
0, if ti(n) ≤ T1

1, if ti(n) > T1.

Furthermore, σa1(n), . . . , σam(n) correspond to the sign config-
urations that were chosen at each of the m junctions.

The QTLC-FA-TT algorithm combines the QTLC-FA algo-
rithm with threshold tuning in a similar manner as in the QTLC-
FA-NFS-TT algorithm. The update rule (5) is again followed to
tune the thresholds. The sign configuration policy used in this
algorithm is based on the aforementioned QTLC-FA algorithm.

B. Implementation

We implemented the threshold-tuning algorithm for all four
algorithms that incorporate graded thresholds, i.e., PTLC,
QTLC-SA, QTLC-FA, and QTLC-FA-NFS, respectively. We
compared the performance of the tuned variants of the TLC
algorithms against their counterparts, which involved fixed
thresholds (no tuning). The algorithms studied are outlined as
follows.

• PTLC. This graded-threshold-based TLC algorithm, as
described in Section V-C, uses a priority assignment
scheme based on waiting queue lengths and elapsed times
to arrive at a sign configuration. Note that this algorithm
uses fixed thresholds and the performance of this algo-
rithm is studied against its tuning variant PTLC-TT.

• PTLC-TT. This algorithm combines threshold tuning
with the aforementioned PTLC. In other words, the sign
configuration policy here is the same as PTLC, except that
the thresholds used (θ = (L1, L2, T1)

T are tuned using the
online incremental algorithm described in Section V-C.

• QTLC-SA. This Q-learning-based TLC algorithm incor-
porates state aggregation and is described in Section V-A.
Note that this algorithm uses fixed thresholds and the
performance of this algorithm is compared against its
tuning variant (QTLC-SA-TT).

• QTLC-SA-TT. This algorithm combines threshold tuning
with the aforementioned QTLC-SA TLC. As in PTLC-
TT, the parameter of thresholds θ = (L1, L2, T1)

T used in
the QTLC-SA TLC algorithm are tuned using the online
incremental algorithm described in Section V-A.
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• QTLC-FA. This is the TLC algorithm presented in [1] and
uses Q-learning with function approximation.

• QTLC-FA-TT. This is the tuning variant of the aforemen-
tioned QTLC-FA algorithm and incorporates the update
(5) to tune the threshold parameter θ.

• QTLC-FA-NFS. This is the Q-learning-based TLC algo-
rithm with function approximation that incorporates the
novel feature selection strategy described in Table I. This
algorithm is described in detail in Section V-B and uses
fixed thresholds. Its performance is compared to its tuning
variant QTLC-FA-NFS-TT.

• QTLC-FA-NFS-TT. This algorithm is the tuning counter-
part of QTLC-FA-NFS and tunes the threshold parameter
θ using the recursions (5).

We performed experiments with the aforementioned TLC
algorithms on the road networks shown in Fig. 2. In essence,
we consider four different settings, i.e., a single junction road
network, a four-junction corridor, a 4 × 4 grid network, and
a network of nine signalized junctions with 24 roads around
the Indian Institute of Science campus in Bangalore (hereafter
referred to as the IISc network), respectively, to test the TLC
algorithms. Thus, we test the performance of our algorithms on
both small road networks (such as the single-junction network
and the four-junction corridor) and large-size road networks
(such as the 4 × 4-grid and the IISc network). The 4 × 4-grid
network consists of 16 edge nodes (where traffic is generated),
16 junctions with traffic lights, and 40 roads, with each being
four lanes wide and, when full, capable of housing up to 1500
vehicles. Furthermore, the cardinality of the state–action space
is on the order of 10130 for the 4 × 4-grid network. We tested
the performance of all the aforementioned TLC algorithms and
their tuning counterparts on a single junction and four-junction
corridor. However, on a 4 × 4-grid network and the IISc
network, we could not implement the QTLC-SA algorithm.
As explained, QTLC-SA uses full-state representations and
hence is not implementable on high-dimensional state–action
spaces (as with the 4 × 4-grid network and the IISc network).
However, QTLC-SA is an enhancement to the Q-learning based
TLC algorithm proposed, for example, in [17]. In fact, the
Q-learning based TLC with full-state representations in [17]
was proposed only for a single-junction road network. The use
of state aggregation allowed the resulting QTLC-SA algorithm
to scale up to a four-junction corridor. The results in this
scenario are presented here.

The simulations are conducted for 25 000 cycles for all
algorithms, and in each simulation, the destination of the road
user is randomly fixed (using a discrete uniform distribution).
At each time step, vehicles are inserted into the road network
based on the spawn frequencies of the edge nodes, where spawn
frequency specifies the rate at which traffic is randomly gener-
ated in GLD. The spawn frequencies of the edge nodes are set
in a way that ensures that the proportion of cars that flow on the
main road to the cars that flow on the side roads is in the ratio
100 : 5. This ratio is close to what is practically observed and
has also been used, for example, in [34]. The following results
are the averages over ten independent simulations with different
initial seeds. For all the algorithms, the weights in the single-

Fig. 2. Road networks used for our experiments. (a) Single junction. (b) Four-
junction Corridor. (c) 4 × 4 grid network. (d) IISc network.

stage cost function (2) are set as α1 = β1 = 0.5, α2 = 0.6, and
β2 = 0.4, respectively. This assignment essentially gives equal
weighting to the queue length and elapsed-time components of
(2) while according higher weighting to the main-road traffic
over the side-road traffic. The threshold parameter θ was set to
(6, 14, 90)T for all the TLC algorithms. The performance of the
TLC algorithms with the aforementioned tuning parameter was
then compared with the counterparts of these algorithms that
incorporate tuning. This value of θ has been used in the results
reported in [1]. The parameters δ and L used in the threshold-
tuning algorithm (5) were set to 0.5 and 10, respectively. The
discount factor γ used in (6) and (9) was set to 0.9.
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Fig. 3. Performance comparison of the TLC algorithms using ATWT as the
metric on two small road networks. (a) Single junction. (b) Four-junction
corridor.

C. Results

Fig. 3 shows the average trip waiting time (ATWT) plots
on a single- and a four-junction corridor, respectively, and
compares the four TLC algorithms, i.e., PTLC, QTLC-SA,
QTLC-FA, and QTLC-FA-NFS, when combined with the
threshold-tuning algorithm (5). Fig. 4(a)–(d) shows ATWT
plots that compare the PTLC, QTLC-FA, and QTLC-FA-
NFS algorithms with their tuning counterparts on a 4 ×
4-grid network and the IISc network, respectively. Table III(b)
presents the total arrived road users (TAR) for the various TLC
algorithms on a 4 × 4-grid network and the IISc network,
respectively. As aforementioned, because QTLC-SA is not
implementable on high-dimensional state spaces (and, hence,
larger networks), performance comparisons of this algorithm
are presented only on a single- and a four-junction corridor.
The choice of weights α1 = β1 = 0.5 is justified by the results
obtained for different choices of α1 in Table III(a).

Although the default setting in GLD for the traffic arrival
pattern is uniform, we also conducted an experiment where the
traffic arrived according to a Poisson process. The results from
this experiment on two road networks for the PTLC and QTLC-
FA-NFS algorithms are presented in Fig. 5. We observe that,
even in this case, our tuning scheme results in a performance
improvement for both the algorithms. This result is significant,

Fig. 4. Performance comparison of the TLC algorithms with their tuning
counterparts on a 4 × 4 grid and the IISc network. (a) PTLC on 4 × 4 grid
network. (b) QTLC-FA-NFS and QTLC-FA on 4 × 4 grid network. (c) PTLC
on the IISc network. (d) QTLC-FA-NFS and QTLC-FA on the IISc network.
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TABLE III
TAR RESULTS FROM TWO EXPERIMENTS. (a) TAR FOR A RANGE OF WEIGHTS α1 ON A SINGLE JUNCTION.

(b) TAR FOR VARIOUS TLC ALGORITHMS ON TWO ROAD NETWORKS

Fig. 5. Performance comparison of the TLC algorithms with a Poisson vehicle
arrival pattern on two road networks. (a) PTLC and QTLC-FA-NFS on a single
junction. (b) PTLC and QTLC-FA-NFS on the IISc network.

because our tuning scheme is shown to perform well, even for
cases where the arrival distribution is not uniform. Note that, in
the basic problem formulation, we made no assumption about
the nature of the arrival distribution, except for assuming a
Markovian evolution for the system.

We also observe that the parameter θ converges to the optimal
threshold value for each TLC algorithm—PTLC, QTLC-SA,
and QTLC-FA—considered in each of the road networks (see
Fig. 2). This is illustrated by the convergence plots in Fig. 6.
These plots and the ATWT plots also show that the transient
phase of the threshold-tuning algorithm (5), i.e., the initial
period when the threshold parameter θ has not converged,
is short.

Fig. 6. Convergence of parameter θ: Illustration for the QTLC-FA-NFS-TT
and PTLC-TT algorithms in the case of a four-junction corridor. (a) L1, L2

evolution for the QTLC-FA-NFS-TT algorithm. (b) L1, L2 evolution for the
PTLC-TT algorithm.

We observe that incorporating our threshold-tuning algo-
rithm results in performance enhancements for all the TLC
algorithms. Furthermore, among the TLC algorithms studied,
it is evident that the QTLC-FA-NFS algorithm shows the best
overall performance on all network settings considered. In
particular, it outperformed the algorithm in [1], which estab-
lishes the superiority of the feature selection procedure of
QTLC-FA-NFS over QTLC-FA in [1]. Although the PTLC-
TT algorithm worked second best to QTLC-FA-NFS-TT on the
single-junction road network, on larger road networks, it is
found to perform poorly compared to the QTLC-FA-NFS
algorithm and its tuning variant.
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VII. CONCLUSION

Our goal in this paper has been to design an algorithm for
tuning the thresholds to their optimal values in any graded-
threshold-based TLC algorithm. Toward this end, we intro-
duced and analyzed three new TLC algorithms with threshold
tuning. We developed and applied, for the first time, an SPSA-
based threshold-tuning algorithm that incorporates Hadamard-
matrix-based deterministic perturbation sequences and with
proven convergence to the optimal thresholds for the various
algorithms. We developed the following three new TLC algo-
rithms: 1) the PTLC algorithm; 2) QTLC-SA; and 3) QTLC-
FA-NFS. We combined our threshold-tuning algorithm with
the aforementioned TLC algorithms. In the case of Q-learning
with full-state representations, our threshold-tuning algorithm
finds an “optimal” way of clustering states based on the afore-
mentioned thresholds, and in the case of the Q-learning with
function-approximation-based TLC, our algorithm amounts to
feature adaptation for an RL algorithm using function approx-
imation (a topic that is of independent research interest in the
RL community). Empirical observations indicate a significant
gain in performance when our threshold-tuning algorithm is
used in conjunction with each of the TLC algorithms con-
sidered. The tuning variants of the TLC algorithms clearly
outperform their counterparts that use (arbitrarily set) fixed
thresholds.

It may be noted that SPSA is a local-search-based op-
timization technique. Although we could possibly consider
methods such as simulated annealing to find the global min-
imum, the flip side of such approaches is the computational
complexity requirement, which is usually very high, unlike
SPSA. Furthermore, in this particular application scenario,
we have observed that the deterministic-perturbation SPSA-
based threshold-tuning algorithm works well, and this case is
demonstrated by the results of the simulation experiments.

APPENDIX

CONVERGENCE ANALYSIS

We show here the convergence of the threshold-tuning al-
gorithm, viz., recursions (5), when the updates of Z̃ are gov-
erned according to (12) in the PTLC-TT scheme. A similar
analysis works in the case when these are governed based
on the other schemes—(8) and (11), respectively. Note that,
because the action selection in the case of the PTLC algorithm
is through the policy as prescribed in Table II, we can write
ân = f(ŝn), n ≥ 0, where the function f is a deterministic
function that specifies the aforementioned policy. For sim-
plicity, we shall consider here the case of L = 1, i.e., of no
additional averaging on top of the two-time-scale averaging.
The case of general (finite) L can also be handled; for example,
see [2].

We will assume, for simplicity, that the elapsed times on
any lane remain bounded, although the bound can be large.
Moreover, the queue lengths on any lane are bounded, because
each lane (between two junctions) can at most accommodate a
bounded number of vehicles. The single-stage cost function is
shown to be a linear function of the state and remains bounded

in this case. The PTLC-TT algorithm (in the case of L = 1) can
be rewritten as follows:

Li(n+ 1) =π1

(
Li(n)− a(n)

(
Z̃(n)

δ�i(n)

))
i = 1, 2

(16)

T1(n+ 1) =π3

(
T1(n)− a(n)

(
Z̃(n)

δ�3(n)

))
(17)

Z̃(n+ 1) = Z̃(n) + b(n)
(
k (ŝn, f(ŝn))− Z̃(n)

)
. (18)

Lemma 1: Each of the recursions (16)–(18) is uniformly
bounded with probability one.

Proof: Recursions (16) and (17) stay uniformly bounded
as a consequence of the projection operators π1 and π2, respec-
tively. As aforementioned, the single-stage cost function k(·, ·)
almost surely remains uniformly bounded. Now, note that, be-
cause b(n) → 0 as n → ∞, there exists an integer N0 > 0 such
that, for all n ≥ N0, b(n) < 1. Thus, for n ≥ N0, Z̃(n+ 1) is
a convex combination of Z̃(n) and k(ŝn, f(ŝn)) (a uniformly
bounded quantity). Suppose that supn |k(ŝn, f(ŝn))| ≤ K̂ al-
most surely for some K̂ > 0. Thus, supn |Z̃(n)| < ∞ almost
surely. The claim follows. �

We first analyze the convergence of the faster time-scale
recursion (18). Define two sequences of time points {s(n)} and
{t(n)} according to s(0) = t(0) = 0, and for n ≥ 1, s(n) =∑n

m=0 a(m), t(n) =
∑n

m=0 b(m). Let Δ(t), t ≥ 0 be defined
by Δ(t) = Δ(n), t ∈ [s(n), s(n+ 1)], n ≥ 0.

Let Fn = σ(ŝm, θ(m),m ≤ n), n ≥ 0, be a sequence of
associated sigma fields. Consider the sequence Nn, n ≥ 0,
defined according to N0 = 0, and for n ≥ 1

Nn=

n−1∑
m=0

b(m) (k (ŝm, f(ŝm))−E [k (ŝm, f(ŝm)) |Fm−1])

�
n−1∑
m=0

b(m)Mm.

Lemma 2: (Nn,Fn), n ≥ 0 forms an almost surely conver-
gent martingale sequence.

Proof: It is easy to see that (Nn,Fn), n ≥ 0, forms a
martingale sequence. Now, consider the quadratic variation
process that is associated with this martingale. Note that

∞∑
n=0

E
[
(Nn+1 −Nn)

2|Fn

]
=

∞∑
n=0

b(n)2M2
m < ∞

almost surely, because M2
m remains uniformly bounded,

because the single-stage cost function k(·, ·) is uniformly
bounded. Moreover,

∑
n b(n)

2 < ∞. The claim follows from
the martingale convergence theorem (cf., [35]). �

Consider now the following set of ODEs associated with
(16)–(18):

L̇1(t) = 0 L̇2(t) = 0 Ṫ1(t) = 0 (19)

˙̃Z(t) = J (θ(t) + δΔ(t))− Z̃(t) (20)
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respectively. Based on (19) and (20) and the manner in which
Δ(t) is defined, it is sufficient to consider the following ODE
in place of (20) for the faster time-scale recursion:

˙̃Z(t) = J(θ + δΔ)− Z̃(t). (21)

Note that we let θ(t) ≡ θ and Δ(t) ≡ Δ, viz., time-invariant
quantities (as they get updated on the slower time scale).
Given T̂ > 0, let T̂n, n ≥ 0, be defined according to T̂0 = 0
and T̂n = min{t(n)|t(n) ≥ T̂n−1 + T̂}, n ≥ 1. Then, T̂n+1 −
T̂n ≈ T̂ , ∀n ≥ 0, and there exists a subsequence {l(n)} of {n}
such that T̂n = t(l(n))∀n. Define L̄1(t), L̄2(t), T̄1(t), Z̄(t),
t ∈ [t(n), t(n+ 1)], n ≥ 0, as follows: L̄1(t(n)) = L1(n),
L̄2(t(n)) = L2(n), T̄1(t(n)) = T1(n), Z̄(t(n)) = Z̃(n), re-
spectively, with suitable continuous linear interpolations in
between intervals [t(n), t(n+ 1)]. Given T , ε > 0, we say
that x̄(·) is a (T, ε)-perturbation of the ODE, ẋ(t) = f(x(t)),
if there exist Tn, n ≥ 0, such that Tn+1 − Tn ≥ T∀n and
supt∈[Tn,Tn+1] ‖x̄(t)− x(t)‖ < ε,∀n.

Proposition 1: The functions L̄1(t), L̄2(t), T̄1(t), Z̄(t), and
t ≥ 0 form (T̂ , γ)-perturbations of ODEs (19) and (20).

Proof: Note that, along the time scale t(n), n ≥ 0, i.e.,
using the sequence of step sizes b(n), n ≥ 0, we can rewrite
(16) and (17) as follows:

Li(n+ 1) =π1 (Li(n)− b(n)χi(n)) , i = 1, 2 (22)

T1(n+ 1) =π3 (T1(n)− b(n)χ3(n)) (23)

where χi(n) = (a(n)/b(n))((Z̃(n)/δ�i(n))), i = 1, 2, 3, re-
spectively. Now, based on Assumption (A2), we have
(a(n)/b(n)) → 0 as n → ∞. Hence, χj(n) = o(1), j =
1, 2, 3. Finally, consider the recursion (18). Note that, by
Lemma 2, we have

∑l(n+1)−1
j=l(n) b(j)Mj → 0 as n → ∞. We can

now rewrite (18) as

Z̃(n+ 1) = Z̃(n) + b(n) (J (θ(n) + δΔ(n)) + χ4(n))

+ (Nn+1 −Nn)

where χ4(n) = E[k(ŝm, f(ŝm))|Fm−1]− J(θ(n) + δΔ(n)).
Based on Assumption (A5), χ4(n) → 0 on the “natural time
scale,” which is clearly faster than the time scale of the algo-
rithm; see [31] for a detailed treatment of natural time-scale
recursions that involve Markov noise. The claim follows. �

Lemma 3: With probability one, |Z̃(n)− J(θ(n) +
δΔ(n)| → 0 as n → ∞.

Proof: The proof follows by applying the theorem in [36]
for every ε > 0. �

We now consider the slower time-scale recursions (16)
and (17). Recall that the parameter dimension in our
case is N = 3. Thus, P = 2
log2(N+1)� = 4. Let Δ(n) =
(Δ1(n),Δ2(n),Δ3(n))

T , n ≥ 0, be the perturbations obtained
using the Hadamard-matrix-based procedure.

Lemma 4: The vectors Δ(n), n ≥ 0, satisfy the following
properties.

1) For any s ≥ 0 and all k ∈ {1, . . . , 3},
∑s+P

n=s+1(1/
Δk(n)) = 0.

2) For any s ≥ 0 and all i, j ∈ {1, . . . , 3}, i �= j,∑s+P
n=s+1(Δi(n)/Δj(n)) = 0.

Proof: The claim is obvious from the construction. �
Let θ(n) = (L1(n), L2(n), T1(n))

T . For any x =

(x1, x2, x3)
T ∈ R3, let π(x)

Δ
= (π1(x1), π1(x2), π2(x3))

T . In
view of Lemma 3, we can consider the following expression in
place of (16) and (17):

θ(n+ 1) = π
(
θ(n)− a(n)J (θ(n) + δΔ(n)) (Δ(n))−1

)
.

(24)

Lemma 5: Given any fixed integer K > 0, for all r ∈
{1, . . . ,K}, the following hold.

1) limm→∞ ‖θ(m+ r)− θ(m)‖ = 0, with probability 1
(wp1).

2) limm→∞ ‖∇θ(m+ r)−∇θ(m)‖ = 0, wp1.

Proof:

1) The proof follows in a similar manner as in the lemma
in [2].

2) The proof follows from 1) and Assumption (A1). �
The proof of the following result was not shown in [2] for

Hadamard matrix perturbations.
Lemma 6: The following conditions hold for any k, l ∈

{1, . . . , 3}, k �= l:∥∥∥∥∥
m+P−1∑
n=m

a(n)

a(m)

�k(n)

�l(n)
∇kJ (θ(n))

∥∥∥∥∥ (25)

∥∥∥∥∥
m+P−1∑
n=m

a(n)

a(m)

1
�l(n)

J (θ(n) + δΔ(n))

∥∥∥∥∥ → 0 as m → ∞.

(26)

Proof: We first show that (25) holds. By letting K = P in
Lemma 5, it follows that a(j)/a(m) → 1 as m → ∞ for any
j ∈ {m, . . . ,m+ P − 1}. In addition, note that P is an even
integer. As a consequence of Lemma 4, we can split any set

Am
Δ
= {m,m+ 1, . . . ,m+ P − 1} into two disjoint subsets

A+
m,k,l, A

−
m,k,l each having the same number of elements, with

A+
m,k,l ∪A−

m,k,l = Am and such that (�k(n)/�l(n)) takes

value +1∀n ∈ A+
m,k,l and −1∀n ∈ A−

m,k,l, respectively. Thus∥∥∥∥∥
m+P−1∑
n=m

a(n)

a(m)

�k(n)

�l(n)
∇kJ (θ(n))

∥∥∥∥∥
=

∥∥∥∥∥∥∥
∑

n∈A+
m,k,l

a(n)

a(m)
∇kJ (θ(n))−

∑
n∈A−

m,k,l

a(n)

a(m)
∇kJ (θ(n))

∥∥∥∥∥∥∥ .
The first claim in (25) now easily follows, and the second claim
follows from Lemma 5 and (A1). �

Proof of Theorem 1: The recursion (24) can be rewritten
as follows. For i = 1, 2, 3, we have

θi(n+ 1) = γi

(
θi(n)− a(n)

J (θ(n) + δΔ(n))

Δi(n)

)
(27)
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where γ1 = γ2 = π1, and γ3 = π2, respectively. The recursion
(27) can be rewritten as follows:

θi(n+ 1) = θi(n)− a(n)
J (θ(n) + δΔ(n))

Δi(n)
− a(n)Zi(n)

(28)

where Zi(n) is an error term that results from the projection.
By a Taylor series expansion of J(θ(m) + δ�(m)) around the
point θ(m), we obtain, for i = 1, 2, 3

θi(m+2P )= θi(m)−
m+2P−1∑

l=m

a(l)∇iJ (θ(l))

−a(m)

m+2P−1∑
l=m

3∑
j=1,j �==i

a(l)

a(m)

�j(l)

�i(l)
∇jJ(θ(l))

−a(m)

m+2P−1∑
l=m

a(l)

a(m)

1
�i(l)

J (θ(l))

+a(m)O(δ)−
m+2P−1∑

j=m

a(j)Zi(j).

The third and fourth terms on the aforementioned right-
hand side asymptotically vanish as a consequence of Lemma 6.
The rest now follows from the theorem in [37]. �
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